Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3+5+7 = 15 không chia hết cho 6
4+6+8=18 chia hết cho 6
8+10+12=30 chia hết cho 10
13+15+17=45 chia 10 dư 5
k mình nha!!!!!!!!!!
Gọi 3 số lẻ liên tiếp không chia hết cho 6 là: 6k+1;6k+3;6k+5
Tông của 3 số lẻ liên tiếp ko chia hết cho 6 là: 6k+1+6k+3+6k+5
6k+1+6k+3+6k+5=6k.3+8
Vì 8 không chia hết cho 6 =>6k.3+8 ko chia hết cho 6
Vậy tổng ba số lẻ liên tiếp ko chia hết cho 6
.
Gọi 3 số chẵn chia hết cho 6 là:6k;6k+2;6k+4
Tổng của 3 số chẵn chia hết cho 6 là:6k+6k+2+6k+4
6k+6k+2+6k+4=6k.3+6
Vì 6 chia hết cho 6 => 6k.3+6 chia hết cho 6
Vậy tổng 3 số tự nhiên chẵn liên tiếp chia hết cho 6
.
Gọi 5 số chẵn liên tiếp chia hết cho 10 là: 10k;10k+2;10k+4;10k+6;10k+8
Tổng 5 chẵn liên tiếp chia hết cho 10 là:10k+10k+2+10k+4+10k+6+10k+8=10k.5+30
Vì 30 chia hết cho 10 => 10k.5+30 chia hết cho 10
Vậy tổng của năng số chẵn liên tiếp chia hết cho 10
.
Gọi 5 số lẻ liên tiếp không chia hết cho 10 là: 10k+1;10k+3;10k+5;10k+7;10k+9
Tổng của 5 số lẻ liên tiếp ko chai hết cho 10 là: 10k+1+10k+3+10k+5+10k+7+10k+9
10k+1+10k+3+10k+5+10k+7+10k+9=10k.5+25
Vì 25 : 10 ( dư 5) => 10k.5+25 : 10 (dư 5)
Vậy tổng của 5 số lẻ liên tiếp chia cho 10 (dư 5)

1) b+5:7 ( dấu chia hết nha tại bàn phím k có dấu này nên k gõ đc) 2) 2k+1;2k+3 ; 2k+5 3) bốn số lẻ liên tiếp sẽ có dạng là: 2k+1; 2k+3;2k+5;2k+7 =) tổng của 4 số lẻ liên tiếp là: 2k+1+2k+3+2k+5+2k+7=8k+16 . mà 8k chia hết cho 8; 18 chia hết cho 8=)tổng của 2k+1; 2k+3;2k+5;2k+7 chia hết cho 8 hay tổng của 4 số lẻ liên tiếp luôn chia hết cho 8 (đpcm) 4) bốn số chẵn liên tiếp sẽ có dạng là : 2k;2k+2;2k+4;2k+6=) tổng của 4 số chẵn liên tiếp là 8k+12 mà 8k chia hết cho 8 nhưng 12 không chia hết cho 8 nên tổng của 2k:2k+2;2k+4;2k+6 không chia hết cho 8 hay tổng 4 số chẵn liên tiếp k chia hết cho 8(đpcm)

tui lam cau b nhe
gọi chẵn 1 là a,chẵn 2 là b
vì a,b chẵn ,liền nhau=>a chia hết cho 4,b ko chia hết cho 4 hoặc b chia hết cho 4,a ko chia hết cho 4
=>a+b ko chia hết cho 4

gọi 5 số tự nhiên là a,a+1,a+2,a+3,a+4
khi đó đặt A=a(a+1)(a+2)(a+3)(a+4)
vì trong 5 số tự nhiên liên tiếp tồn tại ít nhất 1 số chia hết cho 2 và một số chia hết cho 3
mà (2;3)=1 nên A chia hết cho 6
trong 5 số tự nhiên liên tiếp luôn tồn tại một số chia hết cho 5 nên A chia hết cho 5
mà (5;6)=1 nên A chia hết cho 30

Gọi 5 số tự nhiên liên tiếp a, a+1, a+2, a+3, a+4
=> a(a+1)(a+2)(a+3)(a+4) luôn chia hết cho 5
nó cũng chia hết cho sáu vì
a(a+1) chia hết cho 2 (1)
a(a+1)(a+2)chia hết cho 3 (2)
Từ 1 và 2 => tích đó chia hết cho sáu vì (2,3)=1 .(**)
từ * và ** => tích đó chia hết cho 30 vì (5,6)=1.

Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Khi đó đặt A=a(a+1)(a+2)(a+3)(a+4)
Vì trong 5 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 2 và 1 số chia hết cho 3.
Mà (2,3)=1 nên A chia hết cho 6.
Trong 5 số tự nhiên Liên tiếp luôn Tồn tại một số chia hết cho 5, nên A chia hết cho 5.
Mà (5,6)=1 nên A chia hết cho 30.
Gọi 5 số tự nhiên liên tiếp a, a+1, a+2, a+3, a+4
=> a(a+1)(a+2)(a+3)(a+4) luôn chia hết cho 5
nó cũng chia hết cho sáu vì
a(a+1) chia hết cho 2 (1)
a(a+1)(a+2)chia hết cho 3 (2)
Từ 1 và 2 => tích đó chia hết cho sáu vì (2,3)=1 (**)
từ * và ** => tích đó chia hết cho 30 vì (5,6)=1
Gọi tích 5 số đó là:
\(\left(2k+1\right)\left(2k+3\right)\left(2k+5\right)\left(2k+7\right)\left(2k+9\right)\)
Trong 5 số này ta có:
Phải có 1 số chia hết cho 5
Vì trong dãy 5 số lẻ liên tiếp là:
\(\left(1;3;5;7;9\right);\left(9;11;13;15;17\right);...\)
Nên tích của 5 số lẻ liên tiếp phải ⋮ 5
Gọi \(\left(2k+1\right);\left(2k+3\right);\left(2k+5\right);\left(2k+7\right);\left(2k+9\right)\) là 5 số lẻ liên tiếp \(\left(k\in N\right)\)
Tích của 5 số trên là :
\(\left(2k+1\right).\left(2k+3\right).\left(2k+5\right).\left(2k+7\right).\left(2k+9\right)=\overline{.....5}\) (vì các số lẻ này có số tận cùng bằng 5)
\(\Rightarrow\left(2k+1\right).\left(2k+3\right).\left(2k+5\right).\left(2k+7\right).\left(2k+9\right)⋮5\left(dpcm\right)\)