Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)
a)Xét \(VT=\frac{2a+3b}{2a-3b}=\frac{2bk+3b}{2bk-3b}=\frac{b\left(2k+3\right)}{b\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(1\right)\)
Xét \(VP=\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
Từ (1) và (2) =>Đpcm
b)Xét \(VT=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)
Xét \(VP=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
c)Xét \(VT=\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\left[\frac{b}{d}\right]^2=\frac{b^2}{d^2}\left(1\right)\)
Xét \(VP=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) =>Đpcm
a/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{2a}{2c}=\frac{3b}{3d}\)
áp dụng tính caahts dã y tỉ số bằng nhau ta có :
\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\)
=> \(\frac{2a+3b}{2c+3d}=\frac{2a-3b}{2c-3d}\\ \Rightarrow\frac{2a+3b}{2a-3b}=\frac{2c+3d}{2c-3d}\left(đpcm\right)\)
b/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{ab}{cd}\left(1\right)\)
ta có:
\(\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\) (2)
từ 1 và 2 => đpcm
c/ theo bài ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
đặt \(\frac{a}{c}=\frac{b}{d}=k\)
ta có: a = kc
b = kd
=> \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{kc+kd}{c+d}\right)^2=\left(\frac{k\left(c+d\right)}{c+d}\right)^2=k^2\) (1)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kc\right)^2+\left(kd\right)^2}{c^2+d^2}=\frac{k^2c^2+k^2d^2}{c^2+d^2}=\frac{k^2\left(c^2+d^2\right)}{c^2+d^2}=k^2\left(2\right)\)
từ 1 và 2 => đpcm

a. Nếu : \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}\times bd< \frac{c}{d}\times bd\left(\text{ do }bd>0\right)\)
\(\Leftrightarrow ad< bc\) vậy ta có điều phải chứng minh
b. nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\) vậy ta có đpcm

- Chứng minh thuận:
Nhân 2 vế của a/b với d, nhân 2 vế của c/d với b rồi so sánh
- Chứng minh đảo: Hơi khó giải thích...
Cộng ad với bd và bc với bd....
Có gì mà loằng ngoằng vậy.
1./ Thuận: Nếu: \(\frac{a}{b}>\frac{c}{d}\)nhân cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a}{b}\cdot bd>\frac{c}{d}\cdot bd\Rightarrow a\cdot d>b\cdot c\)đpcm
2./ Nghịch: Nếu \(a\cdot d>b\cdot c\)chia cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a\cdot d}{b\cdot d}>\frac{b\cdot c}{b\cdot d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)đpcm

a) \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d ) = c . ( a + b )
=> ac + ad = ac + cb
=> ad = bc
=> \(\frac{a}{b}=\frac{c}{d}\)