\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là nghiệm phương tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

Đặt \(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\).Ta sẽ chứng minh x0 là nghiệm của phương trình \(x^4-16x^2+32=0\)

Ta có: \(x_0=\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)

\(\Rightarrow x_0^2=2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}\)

\(-2\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{6-3\sqrt{2+\sqrt{3}}}\)

\(=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3}.\sqrt{4-\left(2+\sqrt{3}\right)}\)

\(=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)

\(\Rightarrow x_0^2-8=-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\)

\(\Rightarrow\left(x_0^2-8\right)^2=\left[-2\sqrt{2+\sqrt{3}}-2\sqrt{3\left(2-\sqrt{3}\right)}\right]^2\)

\(\Leftrightarrow x_0^4-16x_0^2+64=4\left(2+\sqrt{3}\right)+12\left(2-\sqrt{3}\right)+8\sqrt{3}\)

\(\Leftrightarrow x_0^4-16x_0^2+64=32\)

\(\Leftrightarrow x_0^4-16x_0^2+32=0\)

Điều này chứng tỏ x0 là nghiệm của phương trình \(x^4-16x^2+32=0\)

Vậy \(x_0\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\)là nghiệm của phương trình \(x^4-16x^2+32=0\)(đpcm)