![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài toán này chỉ chứng minh được với điều kiện đó là tam giác vuông với 2 cạnh của góc vuông là a & b.
Lúc đó ta sẽ có:
a^2 + b^2 = c^2
Suy ra:
a^2 + b^2 - c^2 = 0 (1)
Đề bài là:
M = 4a^2b^2 – ( a^2+ b^2 – c^2)
Thay (1) vào:
M = 4a^2b^2 - 0
M = 4a^2b^2
M > 0 (hay M luôn dương).
Ta có \(a^2-b^2-c^2-2bc\)
\(=a^2-\left(b^2+2bc+c^2\right)\)
\(=a^2-\left(b+c\right)^2\)
Ta có \(a^2\ge0;\left(b+c\right)^2\ge0\)nên \(a^2-\left(b+c\right)^2\ge0\)
Khi đó hiệu trên luôn dương
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: a^2 + b^2 + c^2 = ab + bc + ca
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1)
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c.
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2)
Từ (1) và (2) khẳng định dấu "=" khi:
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c
Vậy a=b=c.
Ta có :
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2bc=2ca=0\)
\(\Leftrightarrow\left(a^a-2ab+b^2\right)+\left(b^2-2bc+b^2\right)+\left(a^2-2bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2=0\)
Hoặc \(\Rightarrow\left(a-b\right)^2=0\) hoặc \(\left(b-c\right)^2\)hoặc \(\left(a-c\right)^2=0\Rightarrow a-b=0\)hoặc \(b-c=0\)hoặc \(a-c=0\)hoặc \(a=b\)hoặc \(b=c\)hoặc \(a=c\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=-2bc\)
\(VT=ab-ac-ab-bc+ac-bc=-2bc=VP\)
Vậy ta có đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(b+c+a\right)\cdot\left(b+c-a\right)\)
\(=2p\cdot\left(2p-a-a\right)\)
\(=4p\left(p-a\right)\)
Ta có (đề sai đấy bạn)
Vế trái = a(b-c) - b(a-c) = ab - ac - ab + bc = - ac + bc = -c ( a-b) = VP
Ta có:
a(b-c) - b(a+c)=ab -ac -ab -bc=-(ac+bc)=-c(a+b)