Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi d là ước chung của n+1 và n+2
Khi đó:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+1)-(n+2) chia hết cho d
=>1 chia hết cho d
=>n+1 và n+2 là 2 số nguyên tố cùng nhau
Vậy phân số n+1/n+2 là phân số tối giản
Gọi \(ƯCLN\)\(\left(\frac{n+1}{n+2}\right)\)là \(d\left(d\in Z\right)\)
\(\Rightarrow n+1\)chia hết cho \(d\)
\(\Rightarrow n+2\)chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+2\right)\) chia hết cho \(d\)
\(\Rightarrow1\left(n+1\right)-1\left(n+2\right)\)chia hết cho \(d\)
\(\Rightarrow-1\) chia hết cho \(d\)
\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)
\(\Rightarrow d=\int^1_{-1}\)
Mà bạn này, lớp 5 đã học \(ƯCLN\) đâu nhỉ.

1) A = {0}
2) Có n số tự nhiên không vượt quá n trong đó n thuộc N

\(A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}\)
\(=1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}\)
\(=1+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=1+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=2-\dfrac{2}{n+1}\) ko là số tự nhiên

Sửa đề: Chứng minh rằng với mọi số tự nhiên n; ta có :
A = 2 * n + 11111....1 chia hết cho 3
( n chữ số 1 )
Giải:
Nếu n chia hết cho 3 thì tổng các chữ số của 11111...1 ( n chữ số 1 ) chia hết cho 3 và 2 * n chia hết cho 3 nên A chia hết cho 3.
Nếu n chia 3 dư 1 thì 2 * n chia 3 dư 2 ( (1 + 1) mod 3 ), mà tổng các chữ số của 11111...1 ( n chữ số 1 ) khi đó dư 1 khiến A chia hết cho 3 ( (2 + 1) mod 3 )
Nếu n chia 3 dư 2 thì 2 * n lại dư 1 ( (2 + 2) mod 3 ), mà tổng các chữ số của 11111...1 ( n chữ số 1 ) lại dư 1 khiến a chia hết cho 3 ( (1 + 2) mod 3 )
Vậy bất kể n là số tự nhiên nào, thì A luôn chia hết cho 3 (đpcm)
+ Với n=1 thì A=2x1+1=3 chia hết cho 3
+ Với n=2 thì A=2x2+11=15 chia hết cho 3
+ Với n=3 thì A=2x3+111=117 chia hết cho 3
+ Với n>3 thì
# Nếu n chia hết cho 3 thì 2n chia hết cho 3 và tổng các chữ số của 111..11 là n cũng chia hết cho 3 nên A chia hết cho 3
# Nếu n chia 3 dư 1 thì n-1 chia hết cho 3 => 2x(n-1)=2xn-2 chia hết cho 3
=> A=2xn-2+11111....11+2 (n chữ số 1) khi đó 111...11+2 = 1111..13 (n-1 chữ số 1) => tổng các chữ số của số 111...13 là
(n-1)x1+3=n+2 mà n chia 3 dư 1 nên n+2 chia hết cho 3 => 1111..13 chia hết cho 3 nên A chia hết cho 3
# Nếu n chia 3 dư 2 thì n-2 chia hết cho 3 => 2x(n-2)=2xn-4 chia hết cho 3
=> A=2xn-4+11111..11+4 (n chữ số 1) khi đó 1111..11+4=1111..15 (n-1 chữ số 1) => tổng các chữ số của số 111..15 là
(n-1)x1+5=n+4 do n chia 3 dư 2 nên n+4 chia hết cho 3 => 1111..15 chia hết cho 3 nên A chia hết cho 3
Vậy Với mọi số TN n ta đều có 2xn+1111..111 (n chữ số 1) đều chia hết cho 3

Nếu nn chẵn thì cái tổng chia hết cho 2
Nếu nn lẻ thì
Phân tích nhân tử
Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)
Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được
Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1
Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )
BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3
Vậy, ta có điều phải chứng minh