
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


làm tắt ko hiểu thì hỏi
a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)
b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)


\(\frac{2}{x^2+y^2+y^2+1+2}\le\frac{2}{2xy+2y+2}=\frac{1}{xy+y+1}\)
Dấu "=" xảy ra khi \(x=y=1\)


Đặt : A = 1/x^2+xy + 1/y^2+xy
Có : A = 1/x.(x+y) + 1/y.(x+y) = 1/x + 1/y ( vì x+y = 1 )
Áp dụng bđt 1/a + 1/b >= 4/a+b với mọi a,b > 0 cho x,y > 0 thì :
A >= 4/x+y = 4/1 = 4
Dấu "=" xảy ra <=> x=y=1/2
=> ĐPCM
Tk mk nha


\(bdt< =>x\left(x+y\right)\le\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{y}< =>x^2-xy+y^2\ge xy\)
\(< =>\left(x-y\right)^2\ge0\)(dpcm)

Câu a:
Cm: A = \(x^2+x+1>0\forall x\)
A = \(x^2+2.x\).\(\frac12+\left(\frac12\right)^2+\frac34\)
A = [\(x^2+2x\).\(\frac12\) + \(\left(\frac12\right)^2\)] + \(\frac34\)
A = [\(x+\frac12]^2\) + \(\frac34\)
[\(x+\frac12\)]\(^2\) ≥ 0 ∀ \(x\)
A = [\(x+\frac12\)]\(^2\) + \(\frac34\) ≥ \(\frac34\forall x\)
A > 0 \(\forall x\) (đpcm)
b; B = \(x^{2}\) - \(x + 1\)
B = \(x^{2} - 2. x .\)\(\frac{1}{2} + \left(\left(\right. \frac{1}{2} \left.\right)\right)^{2}\) + \(\frac{3}{4}\)
B = [\(x^{2} - 2. x\).\(\frac{1}{2} + \left(\left(\right. \frac{1}{2} \left.\right)\right)^{2}\)] + \(\frac{3}{4}\)
B = [\(x - \frac{1}{2}\)]\(^{2}\) + \(\frac{3}{4}\)
Vì [\(x - \frac{1}{2}\)]\(^{2}\) ≥ 0 ∀ \(x\)
B = [\(x - \frac{1}{2}\)] + \(\frac{3}{4}\) ≥ \(\frac{3}{4}\)
B > 0 \(\forall x\) (đpcm)
\(A=x^2-xy+y^2\)
\(\Rightarrow A=x^2-xy+\dfrac{1}{4}y^2-\dfrac{1}{4}y^2+y^2\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\)
mà \(\left(x-\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\) với mọi x,y không đồng thời bằng 0