Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề sai thì phải bạn ơi,mình thay đổi đề thành chứng minh \(5^{n+3}-2^{n+3}+5^{n+2}-3^{n+1}⋮60\) nhưng mình thử lại không đúng bạn ạ,bạn thử sửa lại xem sao nhé !
![](https://rs.olm.vn/images/avt/0.png?1311)
n^3 + 5n
= n^3 - n + 6n
= n(n^2 - 1) + 6n
= n(n - 1)(n + 1) + 6n
(n-1)n(n+1) là tích của 3 stn liên tiếp
=> n(n-1)(n+1) chia hết cho 2 và 3 mà (2;3) = 1
=> n(n-1)(n+1) chia hết cho 6
có 6n chia hết cho 6
=> n(n-1)(n+1) + 6n chia hết cho 6
=> n^3 + 5n chia hết cho 6 với mọi n thuộc N
![](https://rs.olm.vn/images/avt/0.png?1311)
+) Nếu n là số nguyên chẵn
=> n + 2020\(⋮2\)
=> \(P=\left(n+2019\right)\left(n+2020\right)\)\(⋮2\)
+) Nếu n là số nguyên lẻ
=> n + 2019 \(⋮2\)
=> \(P=\left(n+2019\right)\left(n+2020\right)\)\(⋮2\)
Vậy với mọi số nguyên n thì biểu thức P luôn chia hết cho 2.
![](https://rs.olm.vn/images/avt/0.png?1311)
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :
Đặt A = n(n+1)(2n+1)
+ n = 2k => A chia hết cho 2
+ n =2k+1 => n+1 = 2k+1+1 =2(k+1) chia hết cho 2 => A chia hết cho 2
Vậy A luôn chia hết cho 2 (1)
+n=3k => A chia hết cho 3
+n= 3k+1 => 2n+1 = 2(3k+1)+1 = 3(2k+1) chia hết cho 3=> A chia hết cho 3
+n= 3k+2 => n+1 = 3k+2+1 =3(k+1) chia hết cho 3
Vậy A luôn chia hết cho 3 (2)
Từ (1);(2) => A chia hết cho 2.3 =6 Với mọi n thuộc N
Ta có: n3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nn3+5n=n3−n+6n=n(n2−1)+6n=n(n−1)(n+1)+6nVì n là số nguyên dương
=> Tích của ba số nguyên dương liên tiếp: n-1, n, n+1 chia hết cho 2 (vì trong 3 số trên chắc chắn có 1 hoặc 2 số lẻ) và chia hết cho 3 (vì trong 3 số trên chắc chắn có 1 số chia hết cho 3)
Mà 6n chia hết cho 6
=> n(n-1)(n+1) +6n chia hết cho 6
=> n3+5nn3+5n chia hết cho 6 (đpcm)
Ta có n3 + 5n = n3 - n + 6n
= n(n2 - 1) + 6n
= n(n2 - n + n - 1) + 6n
= n[n(n - 1) + (n - 1)] + 6n
= n(n - 1)(n + 1) + 6n = (n - 1)n(n + 1) + 6n
Nhận thấy (n - 1)n(n + 1) \(⋮\)6 (tích 3 số nguyên liên tiếp)
Lại có 6n \(⋮\)6
=> (n - 1)n(n + 1) + 6n \(⋮\)6
=> n3 + 5n \(⋮\)6 \(\forall n\inℤ^+\)