Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5

Goi 2 canh goc vuong la b va c (b > c)
Ap dung he thuc luong va dinh ly Pythagore ta co he pt :
{ b.c = 5.2 = 10 (1)
{ b^2 + c^2 = 5^2 = 25 (2)
(1) ---> 2bc = 20 (3)
(2) + (3) ---> (b+c)^2 = 45 ---> b+c = 3 can 5 (4)
(2) - (3) ---> (b-c)^2 = 5 ---> b-c = can 5 (5)
(4),(5) ---> b = 2 can 5 ; c = can 5
Vay canh nho nhat cua tam giac vuong do la can 5.

Giả sử tam giác ABC có góc (BAC) = 90 ° , AH ⊥ BC, BC = 5, AH = 2 và BH < CH
Ta có: BH + CH = 5 (1)
Theo hệ thức liên hệ giữa đường cao và cạnh huyền trong tam giác, ta có:
BH.CH = A H 2 = 2 2 = 4 (2)
Từ (1) và (2) suy ra: BH = 1 và CH = 4
Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:
A B 2 = BH.BC = 1.5 = 5
Suy ra: AB = 5