Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử tồn tại x,y trái dấu thỏa mãn
Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)
=> (x+y)2=xy
Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0
Còn xy nhỏ hơn 0 vì x,y trái dấu
Vậy ko có x,y trái dấu thỏa mãn đề bài
1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương

Ta dùng phương pháp phản chứng :
giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)
đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )
Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài

ta dùng pháp phản chứng
giả sử tồn tại 2 số hữu tỉ x và y trái dấu thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}=\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy
điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau)
vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài

Bài 1 : Nhân vế cả ba đẳng thức ta có :
xy.yz.zx = 3.2.54
=> (x)2.(y)2.(z)2 = 324
=> (x.y.z)2= 182=(-18)2
Nếu xyz = 18 cùng với xy = 3 nên z = 6,cùng với yz = 2 thì x = 9 , cùng với zx = 54 thì y = 1/3.
Tương tự nếu xyz = -18 cùng với xy = 3 nên z = -6,cùng với yz = 2 thì x = -9 , cùng với zx = 54 thì y = -1/3.
Bài 2 :
Do 1/2x + 3 >= 0
2,5 - 3y >= 0
=> |1/2x + 3| + |2,5-3y| = 0
Do đó x = -6 , y = 7/6

Ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Vì \(\left(x+y\right)^2\ge0\)nên \(xy\ge0\)'
Do đó không tồn tại x,y trái dấu và không đối nhau
Vậy ...
Ta dùng pháp phản chứng:
Giả sử tồn tại 2 số hữu tỉ x và y trái dấu thỏa mãn đẳng thức: \(\frac{1}{x+y}\) = \(\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}\)= \(\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy
Điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau). Vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài.Chấm cho mình nha.
Sửa lại đề :\(x^2+y^2+z^2+x+3y+5z+7=0\)
T nghĩ đề nên là số 9 sẽ hợp lí hơn
\(x^2+y^2+z^2+x+3y+5z+9=0\)
\(\Rightarrow\left(x^2+x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\left(z^2+5z+\dfrac{25}{4}\right)+\dfrac{1}{4}=0\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\left(z+\dfrac{5}{2}\right)^2=-\dfrac{1}{4}\Leftrightarrow pt\) vô nghiệm