Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0

Lời giải:
a) Ta có f'(x) = 3x2 + 1, g(x) = 6x + 1. Do đó
f'(x) > g'(x) <=> 3x2 + 1 > 6x + 1 <=> 3x2 - 6x >0
<=> 3x(x - 2) > 0 <=> x > 2 hoặc x > 0 <=> x ∈ (-∞;0) ∪ (2;+∞).
b) Ta có f'(x) = 6x2 - 2x, g'(x) = 3x2 + x. Do đó
f'(x) > g'(x) <=> 6x2 - 2x > 3x2 + x <=> 3x2 - 3x > 0
<=> 3x(x - 1) > 0 <=> x > 1 hoặc x < 0 <=> x ∈ (-∞;0) ∪ (1;+∞).

a) f'(x) = - 3sinx + 4cosx + 5. Do đó
f'(x) = 0 <=> - 3sinx + 4cosx + 5 = 0 <=> 3sinx - 4cosx = 5
<=> sinx -
cosx = 1. (1)
Đặt cos φ = , (φ ∈
) => sin φ =
, ta có:
(1) <=> sinx.cos φ - cosx.sin φ = 1 <=> sin(x - φ) = 1
<=> x - φ = + k2π <=> x = φ +
+ k2π, k ∈ Z.
b) f'(x) = - cos(π + x) - sin = cosx + sin
.
f'(x) = 0 <=> cosx + sin = 0 <=> sin
= - cosx <=> sin
= sin
<=> =
+ k2π hoặc
= π - x +
+ k2π
<=> x = π - k4π hoặc x = π + k, (k ∈ Z).

a: \(-1< =cosx< =1\)
\(\Leftrightarrow-2< =2cosx< =2\)
\(\Leftrightarrow-5< =2cosx-3< =-1\)
\(f\left(x\right)_{min}=-5\) khi cos x=-1
hay \(x=\Pi+k2\Pi\)
\(f\left(x\right)_{max}=-1\) khi cos x=1
hay \(x=k2\Pi\)
b: \(-1< =sinx< =1\)
\(\Leftrightarrow-2< =2sinx< =2\)
\(\Leftrightarrow5< =2sinx+7< =9\)
\(\Leftrightarrow\sqrt{5}< =\sqrt{2sinx+7}< =3\)
\(\Leftrightarrow3\sqrt{5}< =3\sqrt{2sinx+7}< =9\)
\(f\left(x\right)_{min}=3\sqrt{5}\) khi sin x=-1
hay \(x=-\dfrac{\Pi}{2}+k2\Pi\)
\(f\left(x\right)_{max}=9\) khi sin x=1
hay \(x=\dfrac{\Pi}{2}+k2\Pi\)

a) Cách 1: Ta có:
y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.
Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.
Cách 2:
y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1
Do đó, y' = 0.
b) Cách 1:
Áp dụng công thức tính đạo hàm của hàm số hợp
(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u
Ta được
y' =[sin - sin
] + [sin
- sin
] - 2sin2x = 2cos
.sin(-2x) + 2cos
.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,
vì cos = cos
=
.
Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.
Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên
cos2 = cos2
'
cos2 = cos2
.
Do đó
y = 2 cos2 + 2cos2
- 2sin2x = 1 +cos
+ 1 +cos
- (1 - cos2x) = 1 +cos
+ cos
+ cos2x = 1 + 2cos
.cos(-2x) + cos2x = 1 + 2
cos2x + cos2x = 1.
Do đó y' = 0.
Lời giải (Giao lưu_cách làm cấp 2)
\(f'\left(x\right)=6x^8-6x^5+6x^2-6x+6=6\left(x^8-x^5+x^2-x+1\right)=6A\)
Cần c/m : \(A>\left(x^8-x^5+x^2-x+1\right)...với\forall x\in R\)
Nếu \(\left|x\right|\ge1\Rightarrow\left\{{}\begin{matrix}x^8\ge x^5\\x^2\ge x\end{matrix}\right.\) \(\Rightarrow A=\left(x^8-x^5\right)+\left(x^2-x\right)+1>0\Rightarrow A>0\)(1)
Nếu \(\left|x\right|< 1\Rightarrow\left\{{}\begin{matrix}x^2>x^5\\1>x\end{matrix}\right.\)\(\Rightarrow A=\left(x^2-x^5\right)+\left(1-x\right)+x^8>0\Rightarrow A>0\)(2)
Từ (1) và (2) \(\Rightarrow A>0\forall x\in R\)=> dpcm