![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 2+21+22+23+...+260
A = 2+2+2.2+2.2.2+........+2.2.2............2
Vì tất cả các số của tổng A là 2=> A chia hết cho 2
b) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)
A = 2.14+ 25.14+..........+256.14
A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7
c) A = 2+21+22+23+...+260
A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)
A = 2.30+ 26.30+..........+255.30
A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15
![](https://rs.olm.vn/images/avt/0.png?1311)
A = 2 + 22 + 23 +...+ 260
A = (2+22) + (23 + 24) + ...+ (259 + 260)
A = 2.(1+2) + 23.(1+2) + ...+ 259.(1+2)
A = 2.3 + 23.3 + ....+ 259.3
A = 3.(2+23 +...+259) chia hết cho 3
..
các bài còn lại bn dựa zô mak lm\
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)
\(A=6\cdot1+2^2\cdot6+...+2^{58}\cdot6\)
\(A=6\cdot\left(1+2^2+...+2^{58}\right)⋮3\)
CMTT
![](https://rs.olm.vn/images/avt/0.png?1311)
A=2+22++23+....+260
A=(2+22) + (23+24) + .......+(259+260)
A=[2.(1+2)] + [23.(1+2)] + ............+ [259.(1+2)]
A= 2.3 + 23.3 +..............+ 259.3
A= ( 2+23+.............+259) . 3
=>A chia hết cho 3
Chia hết cho 3 bạn ghép 2 số
Chia hết cho 7 bạn ghép 3 số
Chia hết cho 15 bạn ghép 4 số
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
CM $A\vdots 7$:
$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$
$=(1+2+2^2)(2+2^4+....+2^{58})$
$=7(2+2^4+....+2^{58})\vdots 7$
------------------------------
CM $A\vdots 3$:
$A=(2+2^2)+(2^3+2^4)+....+(2^{59}+2^{60})$
$=2(1+2)+2^3(1+2)+....+2^{59}(1+2)$
$=(1+2)(2+2^3+...+2^{59})=3(2+2^3+....+2^{59})\vdots 3$
-----------------------------
CM $A\vdots 15$:
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{57}+2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{57}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{57})$
$=15(2+2^5+...+2^{57})\vdots 15$
![](https://rs.olm.vn/images/avt/0.png?1311)
a.Ta có :
abc deg = ab.10000 + cd.100 + eg
= ab.9999 + cd .99 + ab +cd + eg
= (ab.9999 + cd .99) +(ab +cd + eg)
Vì ab.9999 + cd .99 chia hết cho 11 và ab +cd + eg chia hết cho 11 nên (ab.9999 + cd .99) +(ab +cd + eg) chia hết cho 11 => abc deg chia hết cho 11
Cảm ơn bạn nhưng mk đã tự giải xong trc khi bạn gửi câu trả lời r!!!