![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 9.
a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)
b) Áp dụng BĐT Cauchy cho 2 số không âm:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
Câu 10.
a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1)\)
\(a)\)\(A=5-8x-x^2\)
\(A=-\left(x^2+8x+16\right)+21\)
\(A=-\left(x+4\right)^2+21\le21\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)
\(\Leftrightarrow\)\(x=-4\)
Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)
\(b)\)\(B=5-x^2+2x-4y^2-4y\)
\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)
\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)
\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)
Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)
Chúc bạn học tốt ~
\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(............\)
\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)
\(2A=3^{128}-1\)
\(A=\frac{2^{128}-1}{3}\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(b, 8(a^3+b^3+c^3)≥(a+b)^3 + (b+c)^3 + (c+a)^3 \) với \(a,b,c>0\)
Ta biến đổi thành: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)
Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3\)
\(=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)
\(=3\left(a+b\right)\left(a-b\right)^2\ge0\)
Tương tự như trên với: \(4\left(b^3+c^3\right)-\left(b+c\right)^3\) và \(4\left(c^3+a^3\right)-\left(c+a\right)^3\)
\(\RightarrowĐpcm\)(Viết cái đề ra ý)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1
5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )
Câu 2
a) A = 2011.2013 = ( 2012 - 1 )( 2012 + 1 ) = 20122 - 1 < 20122
=> A < B
B = 3128 - 1
= ( 364 - 1 )( 364 + 1 )
= ( 332 - 1 )( 332 + 1 )( 364 + 1 )
= ( 316 - 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 34 - 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 32 - 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= ( 3 - 1 )( 3 + 1 )( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
= 8( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 ) > 4( 32 + 1 )( 34 + 1 )( 316 + 1 )( 332 + 1 )( 364 + 1 )
=> B > A
![](https://rs.olm.vn/images/avt/0.png?1311)
Có ab + bc + ca = 0
=> 2ab + 2bc + 2ca = 0
Lại có a2 + b2 + c2 = 0 (1)
=> a2 + 2ab + b2 + 2bc + c2 + 2ca = 0
=> (a + b + c)2 = 0
=> a + b + c = 0 (2)
Từ (1) và (2) => a = b = c (đpcm)
Ta có: \(\hept{\begin{cases}a^2+b^2+c^2=0\\ab+bc+ca=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2a^2+2b^2+2c^2=0\\2ab+2bc+2ca=0\end{cases}}\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0;\forall a,b,c\\\left(b-c\right)^2\ge0;\forall a,b,c\\\left(c-a\right)^2\ge0;\forall a,b,c\end{cases}}\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0;\forall a,b,c\)
Do đó \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)
\(\Leftrightarrow a=b=c\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, ta có : (a+b)3- 3ab(a+b)=a3+3a2b+3ab2+b3-3a2b-3ab2
=a3+b3(đpcm)
a)\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+b^3+3ab\left(a+b\right)\)
b)\(a^3+b^3+c^3-3abc=\left(a+b\right)\cdot\left(a^2-ab+b^2\right)+c^3-3abc\)
=\(\left(a+b\right)\cdot\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)-2abc-ca^2-cb^2\)
=\(\left(a+b+c\right)\cdot\left(a^2-ab+b^2\right)-\left(abc+b^2c+bc^2+ca^2+abc+c^2a\right)+c^3+ac^2+bc^2\)
=\(\left(a+b+c\right)\cdot\left(a^2-ab+b^2\right)-\left(a+b+c\right)\cdot\left(bc+ca\right)+c^2\cdot\left(a+b+c\right)\)
=\(\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, a^3 + b^3=(a + b)^3 - 3a2b - 3ab2=(a + b)^3 - 3ab(a + b)
b, a^3 + b^3 + c^3 - 3abc= (a + b)^3 + c3 - 3ab(a + b)-3abc
=(a + b + c)\([\)(a + b)2- (a + b)c +c2\(]\)- 3ab(a + b + c)
=(a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab)
=(a + b + c)(a2 + b2 + c2 - ab - bc- ca)
a2 + b2 + 3 > ab + a + b
<=> 2a2 + 2b2 + 6 > 2ab + 2a + 2b
<=> 2a2 + 2b2 + 6 - 2ab - 2a - 2b > 0
<=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + 4 > 0
<=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 + 4 > 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
quãng đường từ nhà Giang đến chợ huyện gồm một đoạn lên dốc .Giang đi từ nhà đến chợ huyện hết 2h 45 phút.Vận tốc khi lên dốc là 8 km/giờ,vận tốc khi xuống dốc là 12km/giờ.Thời gian khi lên dốc hơn thời gian khi xuống dốc là 0,25 giờ.Tính quãng đường từ nhà Giag đến chợ huyện