Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Nhân cả hai vế với b, ta có đpcm
b) Đề sai
c) Nhân cả hai vế với b, ta có đpcm
d) Bạn trên đã làm r , mình k trình bày lại nữa
d,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)
Ta có :
\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\) (1)
\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\) (2)
\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (3)
Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có \(\hept{\begin{cases}a⋮m\\b⋮m\end{cases}}\Rightarrow a+b⋮m\)
Lại có \(\hept{\begin{cases}a+b+c⋮m\\a+b⋮m\end{cases}}\Rightarrow\left(a+b+c\right)-\left(a+b\right)⋮m\Rightarrow c⋮m\left(\text{đpcm}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a.a}{bc}\) (thay b+c = a) (1)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a.a}{bc}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
b) \(c=a+b\)\(\Rightarrow\)\(a=c-b\)
Ta có: \(\frac{a}{b}-\frac{a}{c}=\frac{ac-ab}{bc}=\frac{a\left(c-b\right)}{bc}=\frac{a^2}{bc}\) (thay c-b = a) (3)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a^2}{bc}\) (4)
Từ (3) và (4) suy ra: \(\frac{a}{b}-\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Không thể. VD: 6 chia hết cho 3; 6 chia hết cho 6; 6 không chia hết cho 18
b)Không thể. VD: 3.4 chia hết cho 6; 3 ko chia hết cho 6; 4 ko chia hết cho 6
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(a^2⋮2\)=) \(a^2\)là số chẵn
=) \(a\)là số chẵn =) \(a⋮2\)( Đpcm )
vì a^2 chia het cho 2 nen a là số chan
ma so chan thi se chia het cho 2
Ta có : a=1 (gt)=> a^2 =1.1=1=a
=> a^3 =1.1.1=1=a