![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay
se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)
=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13
vậy M chia hết cho 13
tick cho mình nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
M=1+3+3^2+3^3+...+3^98+3^99+3^100
M=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
M=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
M=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy M chia hết cho 13
HT
*Sửa đề*
M = 1 + 3 + 32 +....+ 3100
M = ( 1 + 3 + 32) + (33 + 34 + 35) + ... + (398 + 399 + 3100)
M = (1 + 3 + 32) + 33(1 + 3 + 32) + .... + 398.(1 + 3 + 32)
M = 13 . 1 + 13 . 33+ ...... + 13 . 398
M = 13 . ( 1 + 33 +....+ 398)
=> M chia hết cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(\Rightarrow A=\left(1-3+3^2-3^3\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(\Rightarrow A=\left(1-3+9-27\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(\Rightarrow A=-20+...+3^{96}.\left(-20\right)\)
\(\Rightarrow A=\left(-20\right).\left(1+...+3^{96}\right)⋮4\)
\(\Rightarrow A⋮4\)
Vậy \(A⋮4\)
A=1-3+32-33+34-35+36-37+...+398-399
=(1-3+32-33)+(34-35+36-37)+...+(396-397+398-399)
=(1-3+32-33)+34(1-3+32-33)+...+396(1-3+32-34
=(1-3+32-33) (1+34+...+396)
=-20 (1+34+...+396):4 vì 20:4
Vậy A:4
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)
= 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)
= 120+3^4.110+....+3^96.120
= 120.(1+3^4+.....+3^96) chia hết cho 120
=> ĐPCM
Tk mk nha
ta co A=(31+32+33+34)+...+(397+398+399+3100)
tớ gợi ý nhiêu đây thôi
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(A=3+3^2+3^3+3^4+3^5+.....+3^{96}+3^{97}+3^{98}+3^{99}+3^{100}\)
\(A=\left(3+3^2+3^3+3^4+3^5\right)+....+\left(3^{96}+3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(A=363+....+3^{95}.363\)
Vì 363⋮121⇒A⋮121
![](https://rs.olm.vn/images/avt/0.png?1311)
a) P = 1 + 3 + 32 + ... + 398
= (1 + 3 + 32) + (33 + 34 + 35) + ... (396 + 397 + 398)
= 1 (1 + 3 + 32) + 33 (1 + 3 + 32) + ... + 396 (1 + 3 + 32)
= 13 + 33 . 13 + ... + 396 . 13
= 13 (1 + 33 + ... + 396)
Vì 13 chia hết cho 13 nên 13 (1 + 33 + ... + 396) chia hết cho 13
hay P chia hết cho 13 (đpcm)
b) Ta có: P = 1 + 3 + 32 + ... + 398
=> 3P = 3 + 32 + 33 + ... + 399
=> 3P - P = 3 + 32 + 33 + ... + 399 - 1 - 3 - 32 - ... - 398
2P = 399 - 1 = 33 . (34)24 - 1 = 27 . (...1) - 1 = ...7 - 1 = ...6
=> P có chữ số tận cùng là 2 hoặc 8
Mà số chính phương không có tận cùng là 2 hoặc 8
=> P không phải là số chính phương (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
lg
a)C=3+3^2+3^3+...+3^100
=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)
=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)
=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)
=3.40+...+3^96.40
=40.(3+...+3^96) chia hết cho 40
=>C chia hết cho 40
Vậy C chia hết cho 40
phần b làm tương tự
a, sai đề
b,Ta có :
C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100
= (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)
= (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)
=2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)
=2.31+...+2^96.31
=31. (2+...+2^96) chia hết cho 31
=>C chia hết cho 31
(3^2+3^3+3^4)+...+(3^98+3^99+3^100)=13.3^2+....+13.3^98=13.(3^2+...+3^98)chia het cho 13
Đặt $x=\sqrt[3]{3+2\sqrt{2}},y=\sqrt[3]{3-2\sqrt{2}}$
$\Rightarrow \left\{\begin{matrix} x^{3}+y^{3}=6\\xy=1 \end{matrix}\right.$
$\Rightarrow (x+y)^{3}=x^{3}+y^{3}+3xy(x+y)=6+3xy=3[1+1+(x+y)]> 3.3\sqrt[3]{1.1.(x+y)}$
(Vì x>1,y>0=>x+y>1)
Do đó: $(x+y)^{3}> 3^{2}.\sqrt[3]{x+y}$
$\Rightarrow (x+y)^{9}>3^{6}.(x+y)$
$\Rightarrow (x+y)^{8}>3^{6}$
=>đpcm