\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

\(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

Nhân theo vế:

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)

\("="\Leftrightarrow a=b=c=1\)

8 tháng 11 2019

1 ) \(â+b\ge2\sqrt{ab}\)

Tương tự : \(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

Nhân vế theo vế của 3 bpt dc dpcm

Dấu = xảy ra khi a = b = c

2) Nhân 2 vế bpt vs abc

Cm như 1)

3) \(a+2\ge2\sqrt{2a}\)

\(b+8\ge2\sqrt{8b}\)

\(a+b\ge2\sqrt{ab}\)

Nhân vế theo vế của 3 bpt dc dpcm

Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=8\\a=b\end{matrix}\right.\) (vô lí)

nên k xảy ra đẳng thức

8 tháng 2 2020

Ta có: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\ge4abcd\)

b) \(a^2+1\ge2a,b^2+1\ge2b,c^2+1\ge2c\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)

c) \(a^2+4\ge4a,b^2+4\ge4b,c^2+4\ge4c,d^2+4\ge4d\)

\(\Rightarrow\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)

8 tháng 2 2020

a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)

b) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a\cdot2b\cdot2c=8abc\)

c) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a\cdot4b\cdot4c\cdot4d=256abcd\)

13 tháng 8 2020

đặt \(a=\frac{yz}{x^2};b=\frac{zx}{y^2};c=\frac{xy}{z^2}\left(x;y;z>0\right)\)khi đó bđt cần chứng minh trở thành

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+xz\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

áp dụng bđt Bunhiacopxki dạng phân thức ta được

\(\frac{x^4}{\left(x^2+yz\right)\left(2x^2+yz\right)}+\frac{y^4}{\left(y^2+zx\right)\left(2y^2+zx\right)}+\frac{z^4}{\left(z^2+xy\right)\left(2z^2+xy\right)}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\)

phép chứng minh sẽ hoàn tất nếu ta chứng minh được

\(\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+zx\right)\left(2y^2+zx\right)+\left(z^2+xy\right)\left(2z^2+xy\right)}\ge\frac{1}{2}\)

hay ta cần chứng minh

\(2\left(x^2+y^2+z^2\right)^2\ge\left(x^2+yz\right)\left(2x^2+yz\right)+\left(y^2+xz\right)\left(2y^2+xz\right)+\left(z^2+xy\right)\left(2z^2+xy\right)\)

khai triển và thu gọn ta được \(x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)

đánh giá cuối cùng là một đánh giá đúng. Bất đẳng thức được chứng minh

9 tháng 11 2016

d/ Đặt \(x=a+b\) , \(y=b+c\) , \(z=c+a\)

thì : \(a=\frac{x+z-y}{2}\) ; \(b=\frac{x+y-z}{2}\) ; \(c=\frac{y+z-x}{2}\)

Ta có : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{\frac{x+z-y}{2}}{y}+\frac{\frac{x+y-z}{2}}{z}+\frac{\frac{y+z-x}{2}}{x}\)

\(=\frac{z+x-y}{2y}+\frac{x+y-z}{2z}+\frac{y+z-x}{2x}=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{z}{y}+\frac{y}{z}+\frac{z}{x}+\frac{x}{z}-3\right)\)

\(=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{x}{z}\right)-\frac{3}{2}\ge\frac{1}{2}.6-\frac{3}{2}=\frac{3}{2}\)

9 tháng 11 2016

b/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)

\(\Leftrightarrow\left(a^2b^2-2abc+c^2\right)+\left(b^2c^2-2abc+a^2\right)+\left(c^2a^2-2abc+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-c\right)^2+\left(bc-a\right)^2+\left(ca-b\right)^2\ge0\) (luôn đúng)

Vậy bđt ban đầu dc chứng minh.

7 tháng 12 2017

\(BĐT\Leftrightarrow abc+2+\dfrac{1}{\sqrt{2}}\left(a^2+b^2+c^2-2a-2b-2c+3\right)\ge a+b+c\)

\(\Leftrightarrow a^2+b^2+c^2-2\left(a+b+c\right)+3\ge\sqrt{2}\left(a+b+c-abc-2\right)\)

\(\Leftrightarrow\sum\left(a-1\right)^2\ge\sqrt{2}\left[a\left(1-bc\right)+b+c-2\right]\)

Theo nguyên lý Diriclet , trong 3 số a-1 ;b-1; c-1 có ít nhất 2 số cùng dấu. Giả sử đó là b-1 và c-1 thì \(\left(b-1\right)\left(c-1\right)\ge0\)

hay \(bc-1\ge b+c-2\Leftrightarrow1-bc\le2-b-c\)

Do đó \(VF\le\sqrt{2}\left(1-a\right)\left(b+c-2\right)\)

Giờ chỉ cần chứng minh \(\sum\left(a-1\right)^2\ge\sqrt{2}\left(1-a\right)\left(b+c-2\right)\)

và điều này hiển nhiên đúng theo BĐT AM-GM:

\(\sum\left(a-1\right)^2=\left(1-a\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge\left(1-a\right)^2+\dfrac{1}{2}\left(b+c-2\right)^2\ge\sqrt{2}\left|\left(1-a\right)\left(b+c-2\right)\right|\ge\sqrt{2}\left(1-a\right)\left(b+c-2\right)\)

Vậy BĐT được chứng minh. Dấu = xảy ra khi a=b=c=1

P/s: có nhiều cách làm

30 tháng 12 2017

Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:

Phân tích và giải

Dễ thấy: Dấu "=" khi \(a=b=c=1\)

\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)

Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)

Ta sẽ chia làm 2 bước cm:

B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :

\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)

\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)

\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)

\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)

Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))

\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)

B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)

Tự cm nhé Goodluck :v

30 tháng 12 2017

B2 mới khó đó sir :V