![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Chia hết cho 13
B=(3*1+3*3+3*32)+(34*1+34*3+34*32)+...+(32008*1+32008*3+32008*32)
B=3*(1+3+32)+34*(1+3+32)+...+32008*(1+3+32)
B=3*(1+3+9)+34*(1+3+9)+...+32008*(1+3+9)
B=3*13+34*13+...+32008*13
B=(3+34+...+32008)*13 chia hết cho 13(Vì 13 chia hết cho 13)
Vậy B chia hết cho 13
Ta có:
B = 31 + 32 + 33 + 34 + ... + 32010
= ( 31 + 32 + 33 ) + 33 ( 31 + 32 + 33 ) + ... + 32007 ( 31 + 32 + 33 )
= 39 + 33 . 39 + ... + 32007 . 39
= 39 ( 1 + 33 + ... + 32007 )
→ B chia hết cho 39 mà 39 chia hết cho 13 nên B chia hếtt cho 13
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :\(A=2^1+2^2+2^3+...+2^{2010}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(=\left(2+2^3+...+2^{2009}\right)\cdot3\) chia hết cho 3
=> A chia hết cho 3 ( đpcm )
Ta lại có : \(A=2^1+2^2+2^3+...+2^{2010}\)
\(=\left(2^1+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(=2\cdot7+...+2^{2008}\cdot7\)
\(=\left(2+...+2^{2008}\right)\cdot7\) chia hết cho 7
Vậy A chia hết cho cả 3 và 7 ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b, A = 3+3^2 +3^3 +3^4 +....+3^120 =﴾3+3^2+3^3﴿+......+﴾3^118+3^119+3^120﴿ =3﴾1+3+3^2﴿+....+3^118﴾1+3+3^2﴿ = 3.13+...+3^118. 13 = 13﴾ 3+...+3^118﴿ chia hết cho 13 c, A = 3+3^2 +3^3 + 3^4 +....+3^120 = ﴾3+3^2+3^3+3^4﴿+.....+﴾3^117+3^118+3^119+3^120﴿ = 3﴾1+3+3^2+3^3﴿ +...+3^117﴾ 1+3+3^2 +3^3﴿ = 3.40+ ...+3^117 .40 = 40 .﴾ 3+....+3^117﴿ chia hết cho 40
b, A = 3+3^2 +3^3 +3^4 +....+3^120
=(3+3^2+3^3)+......+(3^118+3^119+3^120)
=3(1+3+3^2)+....+3^118(1+3+3^2)
= 3.13+...+3^118. 13
= 13( 3+...+3^118) chia hết cho 13
c, A = 3+3^2 +3^3 + 3^4 +....+3^120
= (3+3^2+3^3+3^4)+.....+(3^117+3^118+3^119+3^120)
= 3(1+3+3^2+3^3) +...+3^117( 1+3+3^2 +3^3)
= 3.40+ ...+3^117 .40
= 40 .( 3+....+3^117) chia hết cho 40
![](https://rs.olm.vn/images/avt/0.png?1311)
1/mình bó tay
2/Gọi d là ƯCLN(2n+3,3n+5)
Hay 3n+5-2n+3 chia hết cho d
Hay 2(3n+5)-3(2n+3) chia hết cho d
Hay 6n+10-6n+9 chia hết cho d
Hay 1 chia hết cho d
Hay d=1
Vậy 2n+3,3n+5 là 2 số nguyên tố cùng nhau
3/bó tay luôn
4/A=2+22+23+24+...+22009+22010
A=(2+22)+(23+24)+...+(22009+22010)
A=2(1+2)+23(1+2)+...+22009(1+2)
A=2.3+23.3+...+22009.3
A=3(2+23+...+22009) chia hết cho 3
Mặt khác:
A=(2+22+23)+(24+25+26)+...+22008+22009+22010
A=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)
A=2.7+24.7+...22008(1+2+22)
A=7(2+24+...+22008) chia hết cho 7
A = 3 + 3^2 + ......+ 3^2010
= (3+3^2) +...+(3^2009+3^2010)
= 3(1+3) +....+ 3^2009(1+3)
= 4( 3+ .... + 3^2009) chia hết cho 4
A = 3+ 3^2 + 3^3 +....+ 3^2010
= (3+3^2+3^3)+.....+(3^2008+3^2009+3^2010)
= 3(1+3+3^2 ) + .....+ 3^2008(1+3+3^2)
= (3+.....+3^2008) x 13 chia hết cho 13