Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)

\(A=2\left|x\right|-4x+1\) \(\forall x\ge0\) A=\(2x-4x+1=1-2x\)
\(\forall x< 0\) A=\(-2x-4x+1=1-6x\)
B=\(\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(x-1-1\right)^2}=\sqrt{\left(x-2\right)^2}=\left|x-2\right|\)
\(\forall x\ge2\) B = x-2 \(\forall x< 2\) B = 2-x
C=\(\sqrt{x-3+2.3\sqrt{x-3}+9}=\sqrt{\left(x-3+3\right)^2}=\left|x\right|\)
\(\forall x\ge0\) C=x \(\forall x< 0\) C=-x
\(a.A=\sqrt{4x^2}-4x+1=|2x|-4x+1\)
\(b.B=\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}=|\sqrt{x-1}+1|=\sqrt{x-1}+1\)
\(c.C=\sqrt{x+6+6\sqrt{x-3}}=\sqrt{x-3+6\sqrt{x-3}+9}=\sqrt{\left(\sqrt{x-3}+3\right)^2}=|\sqrt{x-3}+3|=\sqrt{x-3}+3\left(x\ge3\right)\)
\(d.D=\sqrt{x+2}+\dfrac{1}{\sqrt{x^2+2x+1}}=\sqrt{x+2}+\dfrac{1}{\sqrt{\left(x+1\right)^2}}=\sqrt{x+2}+\dfrac{1}{|x+1|}=\sqrt{x+2}+\dfrac{1}{x+1}\left(x\ge-2\right)\)

a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)

\(x^2-4x-6=\sqrt{2x^2-8x+12}\)
\(\Leftrightarrow\left(x^2+2x\right)-\left(6x+6+\sqrt{2x^2-8x+12}\right)=0\)
\(\Leftrightarrow x\left(x+2\right)-\dfrac{36x^2+72x+36-\left(2x^2-8x+12\right)}{\left(6x+6\right)-\sqrt{2x^2-8x+12}}=0\)
\(\Leftrightarrow x\left(x+2\right)-\dfrac{2\left(17x+6\right)\left(x+2\right)}{\left(6x+6\right)-\sqrt{2x^2-8x+12}}=0\)
\(\Leftrightarrow\left(x+2\right)\left[x-\dfrac{2\left(17x+6\right)}{\left(6x+6\right)-\sqrt{2x^2-8x+12}}\right]=0\)
Pt \(x-\dfrac{2\left(17x+6\right)}{\left(6x+6\right)-\sqrt{2x^2-8x+12}}\) vô nghiệm
=> x + 2 = 0
<=> x = - 2 (nhận)
\(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}-2\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-2}-2\right|+\left|\sqrt{x-2}-3\right|=1\)
Ta có:
\(VT=\left|\sqrt{x-2}-2\right|+\left|3-\sqrt{x-2}\right|\ge\left|\sqrt{x-2}-2+3-\sqrt{x-2}\right|=1\)
Dấu "=" xảy ra khi \(\left(\sqrt{x-2}-2\right)\left(3-\sqrt{x-2}\right)\ge0\)
Bảng xét dấu:
Vậy \(6\le x\le11\)
Trả lời:
a,\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2.\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=t\)\(\Rightarrow x=t^2+1\)
Đẳng thức đã cho trở thành:
\(VT=\)\(\sqrt{t^2+1+2t}+\sqrt{t^2+1-2t}\)
\(=\sqrt{t^2+2t+1}+\sqrt{t^2-2t+1}\)
\(=\sqrt{\left(t+1\right)^2}+\sqrt{\left(t-1\right)^2}\)
\(=t+1+t-1\)
\(=2t\)
\(=2.\sqrt{x-1}=VP\)
Vậy \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2.\sqrt{x-1}\)
b, \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}=\sqrt{6}\)
Đặt \(\sqrt{4x-1}=t\)\(\Rightarrow2x=\frac{t^2+1}{2}\)
Đẳng thức đã cho trở thành:
\(VT=\sqrt{\frac{t^2+1}{2}+t}+\sqrt{\frac{t^2+1}{2}-t}\)
\(=\sqrt{\frac{t^2+2t+1}{2}}+\sqrt{\frac{t^2-2t+1}{2}}\)
\(=\sqrt{\frac{\left(t+1\right)^2}{2}}+\sqrt{\frac{\left(t-1\right)^2}{2}}\)
\(=\frac{t+1}{\sqrt{2}}+\frac{t-1}{\sqrt{2}}\)
\(=\frac{2t}{\sqrt{2}}\)
\(=\frac{2.\sqrt{4x-1}}{\sqrt{2}}\)