
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Chữ số tận cùng của \(21\)là \(1\)nên chữ số tận cùng của \(21^x\)với \(x\)là số tự nhiên là \(1\).
Chữ số tận cùng của tổng \(M\)là chữ số tận cùng của \(1+1+1+...+1+1=10\)là chữ số \(0\).
Do đó \(M\)chia hết cho \(10\)nên \(M\)chia hết cho \(2\)và \(5\).
b) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+...+\left(6^{97}+6^{98}+6^{99}\right)\)
\(Q=6\left(1+6+6^2\right)+6^4\left(1+6+6^2\right)+...+6^{97}\left(1+6+6^2\right)\)
\(Q=\left(1+6+6^2\right)\left(6+6^4+...+6^{97}\right)\)
\(Q=43\left(6+6^4+...+6^{97}\right)⋮43\).

a, Ta co : M= ( 1 +4 + 42 ) + ( 43 + 44 + 45 ) +.......................+ ( 42010 + 42011 +42012 )
M = 1. (1+4+16 ) +43. (1+4+16 ) +.........................+ 42010. ( 1+4 +16
M = 1, 21 + 43. 21 +..............................................+ 42010 .21
M= 21.(1+43+.................................... + 42010 ) CHIA HẾT 21
TƯƠNG TƯ

88 + 220 = 224 + 220 = 220.(24 + 1) = 220.17 chia hết cho 17
27 + 25 + 23 = 23.(24 + 22 + 1) = 23.21 chia hết cho 21

a)Ta thấy: 6 đồng dư với 1(mod 5)
=>6100 đồng dư với 1100(mod 5)
=>6100 đồng dư với 1(mod 5)
=>6100-1 đồng dư với 1-1(mod 5)
=>6100-1 đồng dư với 0(mod 5)
=>6100-1 chia hết cho 5
b)Ta thấy:21 đồng dư với 1(mod 10)
=>2120 đồng dư với 120(mod 10)
=>2120 đồng dư với 1(mod 10)
11 đồng dư với 1(mod 10)
=>1110 đồng dư với 110(mod 10)
=>1110 đồng dư với 1(mod 10)
=>2120-1110 đồng dư với 1-1(mod 10)
=>2120-1110 đồng dư với 0(mod 10)
=>2120-1110 chia hết cho 10
=>2120-1110 chia hết cho 2 và 5
c)Ta thấy:10 đồng dư với 1(mod 3)
=>109 đồng dư với 19(mod 3)
=>109 đồng dư với 1(mod 3)
=>109+2 đồng dư với 1+2(mod 3)
=>109+2 đồng dư với 3(mod 3)
=>109+2 đồng dư với 0(mod 3)
=>109+2 chia hết cho 3
d)Ta thấy:10 đồng dư với 1(mod 9)
=>1010 đồng dư với 110(mod 9)
=>1010 đồng dư với 1(mod 9)
=>1010-1 đồng dư với 1-1(mod 9)
=>109-1 đồng dư với 0(mod 9)
=>109-1 chia hết cho 9
a) 6100 - 1 = (....6) - 1 = (....5) => hiệu đó chia hết cho 5
2110 - 1110 = (....1) - (....1) = (...0) => hiệu đó chia hết cho 2 và 5
109 + 2 = 100..2 . tổng các chữ số bằng 3 => số đó chia hết cho 3
1010 - 1 = 999...9 = 9.111....1 chia hết cho 9

\(21^9+21^8+21^7+...+21+1\)
\(=\left(1+21+21^2+21^3+21^4\right)+21^5\left(1+21+21^2+21^3+21^4\right)\)
\(=204205\left(1+21^5\right)⋮5\)
Ta có \(21^9=...1;21^8=...1;...;21^2=...1;21=21\)
Do đó \(21^9+21^8+...+21^2+21+1=...1+...1+...+...1+1\)
Vì tổng trên có 9 lũy thừa của 21 nên tổng bằng \(...9+1=...0⋮5\)