Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn làm hẳn ra cho mình đi bạn nói zậy làm sao mình hiểu được
Ta có: 999991999=(999991998).99999(1)
Số có tận cùng là 9 vỡi số mũ chẵn sẽ có tận cùng là 1=>(1)=....1 . 99999 = ...9(tận cùng là 9)
5555571997=(5555571996).555557=(5555572)998.555557=(...9)998.555557=....1 . 555557 = ...7(tận cùng là 7)
Tận cùng là 9 - tận cùng là 7 được tận cùng là 2 k chia hết cho 5

(557^1999*436^1999-557^1997*1):5
(436-1):5(triệt tiêu)
(435):5
Vì 435:5 nên số đó cũng chia hết cho 5

\(A=5^5+5^4-8.5^3\)
\(A=5^3.\left(5^2+5-8\right)\)
\(A=5^3.22\)
\(A=5^3.2.11⋮11\)
Vay A chia het cho 11

Ta có:
\(3^{1999}=3^{2000}:3\)
\(=\left(3^2\right)^{1000}:3\)
\(=9^{1000}:3\)
\(=.....:3=.....7\)
\(7^{1997}=7^{1996}.7\)
\(=\left(7^2\right)^{998}.7\)
\(=49^{998}.7\)
\(=.....1.7=.....7\)
Do đó: \(3^{1999}-7^{1997}=.....7-.....7=.....0\)
Vì \(.....0\) chia hết cho \(5.\)
\(\Rightarrow3^{1999}-7^{1997}\) chia hết cho \(5.\) ( đpcm )

ta có : 31999 - 71997 = (34)499 . 33 - (74)499 . 7
= (...1) . (...7) - (...1) . 7
= (...7) - (...7)
= (...0) chia hết cho 5
Vậy 31999 - 71997 chia hết cho 5
a có : 3^{1999}=\left(3^4\right)^{499}.3^3=81^{499}.27\Rightarrow31999=(34)499.33=81499.27⇒
số bị trừ có tận cùng là 77^{1997}=\left(7^4\right)^{499}.7=2041^{499}.7\Rightarrow71997=(74)499.7=2041499.7⇒
số trừ có tận cùng là 7
Vì : $7-7=0\Rightarrow3^{1999}-7^{1997}⋮5$
Vậy ...

999991999 có tân cùng là 9
5555561997 có tận cùng là 6
=> số trên có tận cùng là 3
chia hết cho 5 mới lạ đó bạn!!!!!!???????
Không thể