Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
AH la duong cao cua cac hinh tam giac nao?
Viet ten day tuong ung cua hinh tam giac.
A B H D C
\(P=5+5^2+...+5^{101}+5^{102}\)
\(P=5\left(1+5\right)+...+5^{101}\left(1+5\right)\)
\(P=5\cdot6+...+5^{101}\cdot6\)
\(P=6\cdot\left(5+...+5^{101}\right)⋮6\left(đpcm\right)\)
C/m tương tự khi chứng minh chia hết cho 31 ( nhóm 3 số với nhau )
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Tc:\)\(3a+2b\)\(⋮\text{ }17\)
\(\Rightarrow4\left(3a+2b\right)⋮17\)
\(\Rightarrow12a+8b⋮17\)
\(\Rightarrow\left(10a+b\right)+\left(2a+7b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)
\(\text{#Not_chắv_:)}\)
a. Ta có :
2(10a + b) - (3a+2b)
= 20a+2b-3a-2b
= 17a
Vì 17 \(\vdots\) 17 => 17a \(\vdots\) 17
=> 2( 10a+b) - (3a+2b) \(\vdots\) 17
Vì 3a+2b \(\vdots\) 17 => 2( 10a+b) \(\vdots\) 17
Mà (2,17)=1 => 10a+b \(\vdots\) 17
Vậy nếu 3a+2b \(\vdots\) 17 thì 10a+b \(\vdots\) 17
b. Câu b cx tương tự nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\overline{ab}\text{⋮}17\)
\(\Rightarrow\left(10a+b\right)\text{⋮}17\)
\(\Rightarrow2\left(10a+b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b\right)\text{⋮}17\)
Giả sử \(\left(3a+2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b\right)-\left(3a+2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a+2b-3a-2b\right)\text{⋮}17\)
\(\Rightarrow\left(20a-3a\right)+\left(2b-2b\right)\text{⋮}17\)
\(\Rightarrow17a\text{⋮}17\left(đú\text{ng}\right)\)
Vậy điều giả sử là đúng, nghĩa là \(\left(3a+2b\right)\text{⋮}17\) (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
2x+3y+9x+5y=11x+8y = 17x+17y-(6x+9y)=17(x+y)-3(2x+3y)
17(x+y) chia hết cho 17
2x+3y chia hết cho 17 => 3(2x+3y) chia hết cho 17 => (2x+3y)+(9x+5y) chia hết cho 17 mà 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17
Các trường hợp khác tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt :
\(\left\{{}\begin{matrix}x=3a+2b\\y=10a+b\end{matrix}\right.\)
\(\Leftrightarrow2y-x=2\left(10a+b\right)-\left(3a+2b\right)=20a+2b-3a-2b=17a\)
Vì \(17a⋮17\)
\(\Leftrightarrow2y-x⋮17\)
Mà \(x⋮17\)
\(\Leftrightarrow2y⋮17\)
\(\Leftrightarrow2\left(10a+b\right)⋮17\)
\(\Leftrightarrow10a+b⋮17\left(ƯCLN\left(2,17\right)=1\right)\)
\(\Leftrightarrowđpcm\)
Ta có:
\(3a+2b⋮17\\ \Leftrightarrow30a+20b⋮17\\ 30a+20b-17b⋮17\\ \Leftrightarrow30a+3b⋮17\\ \Leftrightarrow3\left(10a+b\right)⋮17\)
Vì \(3⋮̸17\Rightarrow10a+b⋮17\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : 3a + 11b chia hết cho 17
13( 3a + 11b ) chia hết cho 17
Hay : 39a + 143b chia hết cho 17
Mà : 34a + 136b chia hết cho 17
Suy ra : (39a+143b)-(34a+136b)=5a+7b chia hết cho 17
Bạn tự chứng minh theo chiều ngược lại nhé !
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: (10a + b)+8(3a + 2b)=34a+17b chia hết cho 17.
Mặt khác: 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17, từ đó 10a + b chia hết cho 17.
Ngược lại, do 10a + b chia hết cho 17 => 8(3a + 2b) chia hết cho 17 mà (8; 17)= 1 => 3a+2b chia hết cho 17.
b) Tương tự, lấy (x + 7y) + 5(6x + 11y)
c) Cũng tương tự, lấy (x + 10y) + 3(4x +y)
Nhớ tíck mình nha! :)
Ta có :
\(3a+2b⋮17\)
\(\Rightarrow9\left(3a+2b\right)⋮17\)
\(\Rightarrow27a+18b⋮17\)
\(\Rightarrow\left(17a+17b\right)+\left(10a+b\right)⋮17\)
\(\Rightarrow10a+b⋮17\)(1)
Ta có :
\(10a+b⋮17\)
\(\Rightarrow2\left(10a+b\right)⋮17\)
\(\Rightarrow20a+2b⋮17\)
\(\Rightarrow17a+3a+2b⋮17\)
\(\Rightarrow3a+2b⋮17\)(2)
Từ (1) và (2) \(\Rightarrow3a+2b⋮17\Leftrightarrow10a+b⋮17\)(đpcm)
_Chúc bạn học tốt_