
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài làm
Ta có:
S = 5 + 52 + 53 + ... + 596
S = ( 5 + 54 ) + ( 52 + 55 ) + ( 53 + 56 ) + ... + ( 592 + 595 ) + ( 593 + 596 )
S = 5( 1 + 53 ) + 52( 1 + 53 ) + 53( 1 + 53 ) + ... + 592( 1 + 53 ) + 593( 1 + 53 )
S = 5( 1 + 125 ) + 52( 1 + 125 ) + 53( 1 + 125 ) + ... + 592( 1 + 125 ) + 593( 1 + 125 )
S = ( 1 + 125 )( 5 + 52 + 53 + ... + 592 + 593 )
S = 126( 5 + 52 + 53 + ... + 592 + 593 )
Mà \(126⋮126\)
=> \(126\left(5+5^2+5^3+...+5^{92}+5^{93}\right)⋮126\)
Vậy \(S=5+5^2+5^3+...+5^{96}⋮126\)
# Học tốt #

a) \(S=5+5^2+5^3+...+5^{96}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)
\(S=5.\left(1+5+5^2+5^3+5^4+5^5\right)+...+5^{91}.\left(1+5^2+5^3+5^4+5^5\right)\)
\(S=5.3906+...+5^{91}.3906\)
\(S=3906.\left(5+...+5^{96}\right)\)
\(S=3.126.\left(5+...+5^{91}\right)\) chia hết cho \(6.\)
b) Do \(S\) là tổng các lũy thừa có cơ số là \(5\).
Cho nên mỗi lũy thừa đều tận cùng là \(5\).
Mà \(S\) có tất cả \(96\) số
\(\Rightarrow\) Chữ số tận cùng của \(S\) là \(0\).
\(S=5+5^2+5^3+..+5^{96}\)
\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+\left(5^7+5^8+5^9+5^{10}+5^{11}+5^{12}\right)+...+\left(5^{91}+5^{92}+5^{93}+5^{94}+5^{95}+5^{96}\right)\)\(S=1\left(5+5^2+5^3+5^4+5^6\right)5^6\left(5+5^2+5^3+5^4+5^5+5^6\right)+...+5^{90}+\left(5+5^2+5^3+5^4+5^5+5^6\right)\)\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)\left(1+5^6+...+5^{90}\right)\)\(S=19530\left(1+5^6+...+5^{90}\right)\)
\(S=155.126.\left(1+5^6+...+5^{90}\right)\)
\(S⋮126\rightarrowđpcm\)
\(S=5+5^2+5^3+...+5^{96}\)
\(S=\overline{...5}+\overline{...5}+\overline{...5}+\overline{...5}+...+\overline{...5}+\overline{...5}\)\(S=\left(\overline{...5}+\overline{...5}\right)+\left(\overline{...5}+\overline{...5}\right)+...+\left(\overline{...5}+\overline{...5}\right)\)\(S=\overline{...0}+\overline{...0}+\overline{...0}\)
\(S=\overline{...0}\)

S=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^28+5^29+5^30)
=>Có 30:3=10 nhóm
=>S=5(1+5+5^2)+...+5^28(1+5+5^2)
=>S=5.31+...+5^28.31
S=31(5+....+5^28) chia hết cho 31
nhớ bấm đúng cho mình bạn nhé

\(\dfrac{1}{25}\)S=1/54-1/56+1/58-1/510+...+1/52012-1/52014
\(\Rightarrow\)26/25.S=1/52+1/52014=1/26+...>1/26
đề có lộn không em, chị không biết giải như vậy có đúng đề không

a)Đặt \(A=7^6+7^5-7^4\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4\cdot55⋮55\left(đpcm\right)\)
b)\(A=1+5+5^2+5^3+...+5^{50}\)
\(5A=5+5^2+5^3+5^4+...+5^{51}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{51}\right)-\left(1+5+5^2+5^3+...+5^{50}\right)\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
a)
Ta có :
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\)
=> Chia hết cho 5
b)
Ta có :
\(A=1+5+5^2+....+5^{50}\)
\(5A=5+5^2+....+5^{51}\)
=> 5A - A = \(\left(5+5^2+....+5^{51}\right)\)\(-\left(1+5+....+5^{50}\right)\)
\(\Rightarrow4A=5^{51}-1\)
\(\Rightarrow A=\frac{5^{51}-1}{4}\)