Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác ABC có:
H, M lần lượt là trung điểm BC,AC
=> HM là đường trung bình
=> HM//AB
=> ABHM là hthang
Xét tam giác ABC cân tại A có:
AH là trung tuyến(H là trung điểm BC)
=> AH là đường cao
Xét tứ giác AECH có:
M là trung điểm AC(gt)
M là trung điểm HE(E đối xứng H qua M)
=> AECH là hình bình hành
Mà \(\widehat{AHC}=90^0\)(AH là đường cao)
=> AECH là hình chữ nhật
Ta có: AE//BC,AE=HC(AECH là hình chữ nhật)
Mà \(H\in BC,BH=HC=\dfrac{1}{2}BC\)
\(\Rightarrow AE//BH,AE=\dfrac{1}{2}BH\)
=> AEHB là hình bình hành
=> 2 đường chéo AH và BE cắt nhau tại trung điểm mỗi đường
Mà I là trung điểm AH
=> I là trung điểm BE => B,I,E thẳng hàng
Cảm ơn ạ. Em làm được một nửa thì đuối ý. Em cảm ơn nhìu.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tứ giác AKCH có :
AD = DC ( D là trung điểm AC )
HD = DK ( K là điểm đối xứng của H qua D )
=> AKCH là hình bình hành (1)
Xét ∆ vuông AHC có :
HD là trung truyến
=> HD = AD = DC
Mà HD + DK = HK
AD + DC = AC
=> HK = AC (2)
Từ (1) và (2) => AKCH là hình chữ nhật
b) Xét ∆ABC có :
E là trung điểm AB
D là trung điểm BC
=> ED là đường trung bình ∆ABC
=> ED //BC
Xét ∆ABC có :
E là trung điểm AC
I là trung điểm BC
=> EI là đường trung bình ∆ABC
=> EI//AC , EI = \(\frac{1}{2}AC\)
Xét tứ giác EDCI có :
ED// IC ( I \(\in\)BC )
EI//DC ( D \(\in\)AC)
=> EDCI là hình bình hành
c) Vì ED //HI ( H , I \(\in\)BC )
=> EDIH là hình thang
Vì EI = \(\frac{1}{2}AC\)(cmt)
Mà HD = AD = DC (cmt)
=> HD = \(\frac{1}{2}AC\)
=> EI = HD
Mà EDIH là hình thang
=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )
a: Xét ΔABC có
M là trung điểm của AC
H là trung điểm của bC
Do đó: MH là đường trung bình của ΔABC
Suy ra: MH//AB
hay ABHM là hình thang