Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng bất đẳng thức bu nhi a, ta có
\(\left(a^3+b^3+c^3\right)\left(a+b+c\right)\ge\left(a^2+b^2+c^2\right)^2\ge\frac{1}{9}\left(a+b+c\right)^4\)
=>\(\frac{a^3+b^3+c^3}{a+b+c}\ge\frac{1}{9}\left(a+b+c\right)^2\)
theo giả thiết,m ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow3\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)
=>\(\frac{a^3+b^3+c^3}{a+b+c}\ge1\)
dấu bẳng xảy ra <=>a=b=c=1
nhok cho chị mượn chõ chút
Bạn tự vẽ hình nhé!
Kẻ LH vuông góc với AB tại H
dễ dàng có \(\Delta KHL=\Delta MAK\left(ch-gn\right)\)
=>AK=HL
đặt AB=a,AK=x =>AK=HL=BH=x => HK=\(a-2x\)
ta có \(S_{ABC}=\frac{a^2}{2}\) ;\(S_{KML}=\frac{KL^2}{2}=\frac{HK^2+BH^2}{2}=\frac{\left(a-2x\right)^2+x^2}{2}\)
đến đây là tìm min của pt bậc 2 là sẽ ra

Ta có: \(a^2+ab+b^2\)
\(=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\frac{3\left(a+b\right)^2}{4}}=\frac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự, ta có: \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}}{2}\left(b+c\right)\)
\(\sqrt{c^2+ca+a^2}\ge\frac{\sqrt{3}}{2}\left(c+a\right)\)
Do đó ta có: \(Q\ge\frac{\sqrt{3}}{2}\left(a+b+b+c+c+a\right)=\sqrt{3}\) ( Do a+b+c=1)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

Tự chứng minh \(ab+bc+ca\le a^2+b^2+c^2\)
\(\Rightarrow3\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le\left(a+b+c\right)^3\)
\(\Leftrightarrow3\left(ab+bc+ca\right)\le9\)
\(\Leftrightarrow ab+bc+ca\le3\)
\(\Rightarrow\sqrt{c^2+3}\ge\sqrt{c^2+ab+bc+ca}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\Rightarrow\frac{ab}{\sqrt{c^2+ab}}\le\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)\)
Đến đây dễ rồi để YẾN tự làm

Từ giả thiết ta có: \(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Xét vế trái: \(\frac{a^4+b^4}{ab\left(a^3+b^3\right)}+\frac{b^4+c^4}{bc\left(b^3+c^3\right)}+\frac{c^4+a^4}{ca\left(c^3+a^3\right)}\)\(=\frac{\frac{a^4+b^4}{a^4b^4}}{\frac{ab\left(a^3+b^3\right)}{a^4b^4}}+\frac{\frac{b^4+c^4}{b^4c^4}}{\frac{bc\left(b^3+c^3\right)}{b^4c^4}}+\frac{\frac{c^4+a^4}{c^4a^4}}{\frac{ca\left(c^3+a^3\right)}{c^4a^4}}\)
\(=\frac{\frac{1}{a^4}+\frac{1}{b^4}}{\frac{1}{a^3}+\frac{1}{b^3}}+\frac{\frac{1}{b^4}+\frac{1}{c^4}}{\frac{1}{b^3}+\frac{1}{c^3}}+\frac{\frac{1}{c^4}+\frac{1}{a^4}}{\frac{1}{c^3}+\frac{1}{a^3}}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)
và ta cần chứng minh \(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge1\)
Ta xét BĐT phụ sau: \(\frac{p^4+q^4}{p^3+q^3}\ge\frac{p+q}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(p-q\right)^2\left(p^2+pq+q^2\right)\ge0\)(đúng với mọi số thực p,q)
Áp dụng ta có: \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)(1); \(\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\)(2); \(\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{2\left(x+y+z\right)}{2}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = \(\frac{1}{3}\)hay a = b = c = 3


Ta có: \(a^2+b^2+c^2\ge3abc\)
Suy ra: \(1\ge abc\)
Mà \(a+b+c\ge3\sqrt{abc}\ge3\)
Suy ra: \(2\left(a+b+c\right)\ge6\)
Suy ra: \(VT+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge VT+\frac{1}{a+b+c}\ge VT+\frac{1}{3}=6+\frac{1}{3}=6\frac{1}{3}\)
Vậy .........
UCT -->Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2}{2}+\frac{5}{2}\) với \(0\le a^2;b^2;c^2\le3\)
Tương tự + lại là xog

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab^2c}{ac}}=2b\) ; \(\frac{ab}{c}+\frac{ca}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ca}{b}\ge2c\)
Cộng vế với vế: \(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)