\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 9 2017

Lời giải:

Từ \(x+y+z=xyz\Rightarrow \frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

Do đó:

\(M=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

\(\Leftrightarrow M=3^2-2=7\)

Vậy \(M=7\)

17 tháng 7 2017

\(=>P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)

CHÚC BẠN HỌC TỐT..........

18 tháng 9 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)

\(\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{x+y+z}{xyz}\right)=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.1=3\) ( Do x+y+z=xyz )

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3-2=1\)

Vậy P = 1

29 tháng 12 2017

Nhân ra thôi

30 tháng 12 2017

\(A=\left(xy+yz+xz\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-xyz\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\\ =y+x+\dfrac{xy}{z}+y+z+\dfrac{yz}{x}+x+z+\dfrac{xz}{y}-\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\\ =2\left(x+y+z\right)=2.2018=4036\)

30 tháng 11 2018

Câu hỏi của Hoàng Liên - Toán lớp 9 - Học toán với OnlineMath Em tham khảo tại link này nhé !

5 tháng 12 2018

\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)

\(=x.\left(\dfrac{x}{y+z}+1-1\right)+y.\left(\dfrac{y}{x+z}+1-1\right)+z.\left(\dfrac{z}{x+y}+1-1\right)\)

\(=x.\left(\dfrac{x+y+z}{y+z}\right)+y.\left(\dfrac{x+y+z}{x+z}\right)+z.\left(\dfrac{x+y+z}{x+y}\right)-\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)-\left(x+y+z\right)=\left(x+y+z\right)-\left(x+y+z\right)=0\)