Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho hình chữ nhật ABCD, tăng cạnh AB 36m, cạnh BC giảm 16% thì diện tíchmới lớn hơn diện tích cũ là 5%.độ dài ab sau khi tăng là...
Giúp tớ vs
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)
Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)
\(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng bđt Cô-si có
\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x^4}{4}+\frac{y^4}{4}\ge2.\sqrt{\frac{x^4}{4}.\frac{y^4}{4}}=\frac{x^2y^2}{2}\) (BĐT Cô - si)
=> \(xy\left(2013-\frac{xy}{2}\right)\ge\frac{x^2y^2}{2}-2014\)
<=> \(2013xy-\frac{x^2y^2}{2}\ge\frac{x^2y^2}{2}-2014\) <=> \(x^2y^2-2013xy-2014\le0\)
<=> \(\left(xy\right)^2-2014xy+xy-2014\le0\)
<=> \(\left(xy-2014\right)\left(xy+1\right)\le0\)
<=> \(-1\le xy\le2014\)
Vậy Max (xy) = 2014 khi x2 = y2 và xy= 2014 => x = y = \(\sqrt{2014}\) hoặc x = y = - \(\sqrt{2014}\)
Min (xy) = -1 khi x2 = y2 và xy = -1 => x = 1; y = -1 hoặc x =- 1; y = 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT svacxơ, ta có
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu = xảy ra <=>x=y=1/2
^_^
theo de bai =>\(2y>=2\sqrt{xy.4}\)(co si)
=>\(\frac{\sqrt{y}}{\sqrt{x}}>=2\)=>\(\frac{y}{x}>=4\)
ta co \(A=\frac{x}{y}+\frac{2y}{x}\)đặt \(\frac{y}{x}=a\)
=>\(A=\frac{1}{a}+2a=\frac{1}{a}+\frac{a}{16}+\frac{31}{16}a>=\frac{1}{2}+\frac{31}{4}=\frac{66}{8}=\frac{33}{4}\)
<=>y=4x