K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2021

ai giup em vs

26 tháng 1 2021

\(A=2x^2+x-5y+4\)

Thay x = 1/2 ; y = -1/52 vào biểu thức trên ta được : 

\(=2.\frac{1}{4}+\frac{1}{2}-5.\frac{-1}{52}+4=1+\frac{5}{52}+4\)

\(=5+\frac{5}{52}=\frac{260}{52}+\frac{5}{52}=\frac{265}{52}\)

\(B=2x^2-3y^2+4z^3\)

Thay x = 2 ; y = z = -23 vào biểu thức trên ta được : 

\(=2.4-3.169+4.2197=8-507+8788=8289\)

tương tự với c, bài này ko khó, tại số to nên tính có khi nhầm lẫn vài chỗ thôi. 

1: xy+x+y+1=0

=>x(y+1)+(y+1)=0

=>(x+1)(y+1)=0

=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)

2: xy+x+6=0

=>x(y+1)=-6

=>(x;y+1)∈{(1;-6);(-6;1);(-1;6);(6;-1);(2;-3);(-3;2);(-2;3);(3;-2)}

=>(x;y)∈{(1;-7);(-6;0);(-1;5);(6;-2);(2;-4);(-3;1);(-2;2);(3;-3)}

3: -xy-x-y-1=0

=>xy+x+y+1=0

=>x(y+1)+(y+1)=0

=>(x+1)(y+1)=0

=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)

4: xy-x-y+1=0

=>x(y-1)-(y-1)=0

=>(x-1)(y-1)=0

=>\(\begin{cases}x-1=0\\ y-1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=1\end{cases}\)

5: xy+2x+y+11=0

=>x(y+2)+y+2+9=0

=>x(y+2)+(y+2)=-9

=>(x+1)(y+2)=-9

=>(x+1;y+2)∈{(1;-9);(-9;1);(-1;9);(9;-1);(3;-3);(-3;3)}

=>(x;y)∈{(0;-11);(-10;-1);(-2;7);(8;-3);(2;-5);(-4;1)}

6: ĐKXĐ: x<>0

\(\frac{5}{x}+\frac{y}{4}=\frac18\)

=>\(\frac{20+xy}{4x}=\frac18\)

=>\(\frac{40+2xy}{8x}=\frac{x}{8x}\)

=>40+2xy=x

=>x-2xy=40

=>x(1-2y)=40

=>x(2y-1)=-40

mà 2y-1 lẻ(do y nguyên)

nên (x;2y-1)∈{(-40;1);(40;-1);(8;-5);(-8;5)}

=>(x;2y)∈{(-40;2);(40;0);(8;-4);(-8;6)}

=>(x;y)∈{(-40;1);(40;0);(8;-2);(-8;3)}

8: (x+2)(y-3)=-3

=>(x+2;y-3)∈{(1;-3);(-3;1);(-1;3);(3;-1)}

=>(x;y)∈{(-1;0);(-5;4);(-3;6);(1;2)}

16 tháng 6 2016

\(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=t=\frac{x-z}{1998-2000}=\frac{x-y}{1998-1999}=\frac{y-z}{1999-2000}.\)

Hay: \(\frac{x-z}{-2}=\frac{x-y}{-1}=\frac{y-z}{-1}\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)(1)

a) \(\left(x-z\right)^3=\left(x-z\right)^2\left(x-z\right)=\left(2\left(x-y\right)\right)^2\left(2\left(y-z\right)\right)\)

\(\Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)ĐPCM a)

b) Từ (1) => x + z = 2y 

Để \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{z+x}{\frac{1}{3}}\)

Từ \(\Rightarrow\frac{x+y}{\frac{1}{2}}=\frac{y+z}{\frac{1}{5}}=\frac{x+y+y+z}{\frac{1}{2}+\frac{1}{5}}=\frac{4y}{\frac{7}{10}}=\frac{2y}{\frac{1}{3}}\)

=>y=0 =>x=0 => z=0 Suy ra hệ thức: x-y/4=y-z/5 luôn đúng. ĐPCM

17 tháng 6 2016

Bạn đinh thùy linh trả lời rõ ràng hơn được ko 

25 tháng 2 2019

b, Ta có:

\(xy+2x-y=5\)

\(\Rightarrow\) \(xy+2x-y-2=5-2\)

\(\Rightarrow\left(xy-y\right)+\left(2x-2\right)=3\)

\(\Rightarrow y\left(x-1\right)+2\left(x-1\right)=3\)

\(\Rightarrow\left(y+2\right)\left(x-1\right)=3\)

\(\Rightarrow\left\{\left(y+2\right)\left(x-1\right)\right\}\inƯ_{\left(3\right)}\)

\(\Rightarrow\left\{\left(y+2\right)\left(x-1\right)\right\}\in\left\{\left(3;1\right)\left(1;3\right)\left(-1;-3\right)\left(-3;-1\right)\right\}\)

Ta có bảng sau:

\(y+2\) \(3\) \(1\) \(-3\) \(-1\)
\(y\) \(1\) \(-1\) \(-5\) \(-3\)
\(x-1\) \(1\) \(3\) \(-1\) \(-3\)
\(x\) \(2\) \(4\) \(0\) \(-2\)

- Các số trên thỏa mãn điều kiện: \(x;y\in Z\)

\(\Rightarrow\left\{\left(x;y\right)\right\}\in\left\{\left(2;1\right)\left(4;-1\right)\left(0;-5\right)\left(-2;-3\right)\right\}\)

Vậy \(\left\{\left(x;y\right)\right\}\in\left\{\left(2;1\right)\left(4;-1\right)\left(0;-5\right)\left(-2;-3\right)\right\}\)

Phần a tớ chưa nghĩ ra haha

19 tháng 11 2022

a: =>(x-1)(y+4)=15

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1;y+4\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(3;5\right);\left(5;3\right)\right\}\\\left(x-1;y+4\right)\in\left\{\left(-1;-15\right);\left(-15;-1\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(2;11\right);\left(16;-3\right);\left(4;1\right);\left(6;-1\right);\left(0;-19\right);\left(-14;-5\right);\left(-2;-9\right);\left(-4;-7\right)\right\}\)

d: =>xy+3x-y-3=3

=>(y+3)(x-1)=3

\(\Leftrightarrow\left(x-1;y+3\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(2;0\right);\left(4;-2\right);\left(0;-6\right);\left(-2;-4\right)\right\}\)

b: =>(2x+1)*y=7

=>\(\left(2x+1;y\right)\in\left\{\left(1;7\right);\left(7;1\right);\left(-1;-7\right);\left(-7;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(0;7\right);\left(3;1\right);\left(-1;-7\right);\left(-4;-1\right)\right\}\)