Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử tồn tại x,y trái dấu thỏa mãn
Khi đo ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)
=> (x+y)2=xy
Đẳng thức trên là vô lí vì (x+y)2\(\ge\)0
Còn xy nhỏ hơn 0 vì x,y trái dấu
Vậy ko có x,y trái dấu thỏa mãn đề bài
1/x+y=1/x+1/y
1/x+y=x+y/xy( nhân vào như bài toán bình thường)
=>(x+y)(x+y)=1.xy
=>(x+y)2=xy
x, y cùng dấu thì phép tính mới dương
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta dùng phương pháp phản chứng :
giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đẳng thức\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
suy ra : \(\frac{1}{x+y}=\frac{y+x}{xy}\Leftrightarrow\left(x+y\right)^2=xy\)
đẳng thức này không xảy ra vì \(\left(x+y\right)^2>0\), còn xy < 0 ( do x,y là hai số trái dấu , không đối nhau )
Vậy không tồn tại hai số hữu tỉ x và y trái dấu , không đối nhau thỏa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
\(\Rightarrow\frac{1}{x+y}=\frac{y+x}{xy}\)
\(\Rightarrow xy=\left(x+y\right)^2\)
Vì \(\left(x+y\right)^2\ge0\)nên \(xy\ge0\)'
Do đó không tồn tại x,y trái dấu và không đối nhau
Vậy ...
Ta dùng pháp phản chứng:
Giả sử tồn tại 2 số hữu tỉ x và y trái dấu thỏa mãn đẳng thức: \(\frac{1}{x+y}\) = \(\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}\)= \(\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy
Điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau). Vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài.Chấm cho mình nha.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{y}{xy}+\frac{x}{xy}=\frac{x+y}{xy}\)
=> (x+y)2 = xy .Vì (x+y)2 \(\ge\)0 nên xy\(\ge\)0 => x,y cùng dấu
Vậy không tồn tại x, y trái dấu thoả mãn đẳng thức đã cho
![](https://rs.olm.vn/images/avt/0.png?1311)
1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)
\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)
\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)
Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé
2,bài 2 để mai anh xem nha
![](https://rs.olm.vn/images/avt/0.png?1311)
ta dùng pháp phản chứng
giả sử tồn tại 2 số hữu tỉ x và y trái dấu thỏa mãn đẳng thức \(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\)
=> \(\frac{1}{x+y}=\frac{y+x}{xy}\) <=> \(\left(x+y\right)^2\) = xy
điều này vô lí vì \(\left(x+y\right)^2\) > 0 còn xy < 0( vì x và y trái dấu , không đối nhau)
vậy không tồn tại 2 số hữu tỉ x và y trái dấu , không đối nhau thảo mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Ta có:
\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{\left(x+z\right).\left(y+x\right).\left(z+y\right)}{xyz}\)
+) Nếu .\(x+y+z\ne0\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(=\frac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(..............\)