Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A = \(\frac{\left(2^4\right)^3.3^{10}+2^3.3.5.\left(2.3\right)^9}{\left(2^2\right)^6.3^{12}+\left(2.3\right)^{11}}\)= \(\frac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}\)
= \(\frac{2^{12}.3^{10}+2^{12}.3^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}\)= \(\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3+1\right)}\)= \(\frac{2.6}{3.7}=\frac{4}{7}\)
c, theo đề bài ta có :
x2 = yz, y2 = xz , z2 = xy
\(\Rightarrow\frac{x}{y}=\frac{z}{x},\frac{y}{x}=\frac{z}{y},\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)
AD t/c DTSBN, ta có
\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\Rightarrow\frac{X+z+y}{y+x+z}=1\)
x= 1y
z= 1x
y= 1z
=> x = y = x

\(60=3.4.5\)
Ta cần chứng minh xyz chia hết cho 3 ; 4 và 5
\(∗\)Giả sử cả x ; y và z đều không chia hết cho 3
Khi đó x ; y và z chia cho 3 dư 1 hoặc dư 2 => x2 ; y2 và z2 chia cho 3 dư 1
\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 3 )
Vô lí vì \(z^2\equiv1\) ( mod 3 )
Vậy tồn tại ít nhất 1 số chia hết cho 3, do đó \(xyz⋮3\) ( 1 )
\(∗\)Giả sử cả x ; y và z không chia hết cho 4
Khi đó x ; y và z chia cho 4 dư 1 ; 2 hoặc 3
- TH1 : Cả x ; y và z lẻ => x2 ; y2 và z2 chia 4 dư 1
\(\Rightarrow x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại )
- TH2 : Có ít nhất 2 số chẵn => xyz chia hết cho 4
- TH3 : Có 1 số chẵn và 2 số lẻ
+) Với x ; y lẻ thì \(z^2=x^2+y^2\equiv1+1=2\) ( mod 4 ) ( loại do z chẵn nên \(z^2\equiv0\) ( mod 4 ) )
+) Với x ; z lẻ thì \(y^2=z^2-x^2\equiv\left(z-x\right)\left(z+x\right)\) .Ta có bảng sau :
z | x | z- |
4m + 1 | 4n + 1 | 4( m - n ) |
4m + 3 | 4n + 1 | 4 ( n - n ) + 2 |
Các trường hợp khác tương tự
Ta luôn có \(y^2=\left(z-x\right)\left(z+x\right)⋮8\) . Trong khi đó y2 không chia hết cho 4 nhưng lại chia hết cho 8 => Mâu thuẫn
Vậy tồn tại ít nhất 1 số chia hết cho 4 \(\Rightarrow xyz⋮4\) ( 2 )
\(∗\)Giả sử cả x ; y và z không chia hết cho 5
Khi đó x ; y và z chia cho 5 dư 1 ; 2 ; 3 hoặc 4 => x2 ; y2 và z2 chia cho 5 dư 1 hoặc -1
- TH1 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv2\) ( mod 5 ) ( loại )
- TH2 : \(x^2\equiv-1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv-1\) ( mod 5 ) ( loại )
- TH3 : \(x^2\equiv1\) ( mod 5 ) ; \(y^2\equiv-1\) ( mod 5 ) \(\Rightarrow z^2=x^2+y^2\equiv0\) ( mod 5 ) ( loại )
Vậy tồn tại ít nhất một số chia hết cho 5 \(\Rightarrow xyz⋮5\) ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) \(\Rightarrow xyz⋮3.4.5=60\left(đpcm\right)\)
Cho x,y,z,t là các số thực dương thỏa mãn đẳng thức:\(x^2+z^2=y^2+t^2\)
Chứng minh x+y+z+t là hợp số

Lời giải:
Phản chứng. Giả sử $x+y+z+t$ là số nguyên tố. Vì $x,y,z,t$ nguyên dương nên $x+y+z+t\geq 4$. Do đó nó là snt lẻ.
$\Rightarrow x+z$ và $y+t$ phải khác tính chẵn lẻ.
Không mất tính tổng quát, giả sử $x+z$ chẵn và $y+t$ lẻ. Khi đó:
$x^2+z^2=(x+z)^2-2xz$ chẵn
$y^2+t^2=(y+t)^2-2yt$ lẻ
Do đó $x^2+z^2$ không thể bằng $y^2+t^2$ (trái với giả thiết)
Vậy $x+y+z+t$ là hợp số.
hmm...
\(x^2+z^2=y^2+z^2\)
\(\Leftrightarrow x^2+y^2+z^2+t^2=2\left(y^2+z^2\right)\)
Do đó \(x^2+y^2+z^2+t^2⋮2\) (1)
Lại có: \(x^2-x⋮2;y^2-y⋮2;z^2-z⋮2;t^2-t⋮2\)
\(\Rightarrow x^2-x+y^2-y+z^2-z+t^2-t⋮2\)
Hay \(\left(x^2+y^2+z^2+t^2\right)-\left(x+y+z+t\right)⋮2\) (2)
Từ (1) và (2) suy ra \(x+y+z+t⋮2\)
Mà \(x,y,z,t\) đều là các số dương nên \(x+y+z+t>2\) => \(x+y+z+t\) là hợp số.


+, Nếu cả 3 số x,y,z khi chia 3 đều khác dư thì :
x+y+z chia hết cho 3
(x-y).(y-z).(z-x) ko chia hết cho 3
=> ko t/m
+, Nếu trong 3 số x,y,z có 2 số chia cho 3 cùng dư , 1 số chia cho 3 khác dư 2 số còn lại thì :
x+y+z ko chia hết cho 3
(x-y).(y-z).(z-x) chia hết cho 3
=> ko t/m
=> cả 3 số x,y,z chia cho 3 đều có cùng dư
=> x-y;y-z;z-x đều chia hết cho 3
=> (x-y).(y-z).(z-x) chia hết cho 27
=> x+y+z chia hết cho 27
=> ĐPCM
Tk mk nha

Xét th x-y;y-z;z-x ko cùng đồng dư khi chia cho 3 khi đó x+y+z chia hết cho 3 mà x,y,z tồn tại 2 số cùng đồng dư khi chia cho 3 nên x+y+z ko chia hết cho 3, mâu thuẫn.
Xét th x-y;y-z;z-x tồn tại 2 hiệu cùng đồng dư khi chia cho 3 khi đó cả 3 hiệu cùng đồng dư khi chia cho 3, nếu khác 0 khi đóVT ko chia hết cho 3 mà \(x\equiv y\equiv z\left(mod3\right)\) nên x+y+z chia hết cho 3 hay VP chia hết cho 3, mâu thuẫn
Xét TH x-y;y-z;z-x cùng chia hết cho 3 khi đó VP chia hết cho 3 VT chia hết cho 3.3.3=27 hay x+y+z \(⋮27\)(đpcm)
Akai Haruma Nguyễn Việt Lâm ktra xem em làm đúng chưa ạ?

Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Lời giải:
Đặt \(\left(\frac{xy}{z}; \frac{yz}{x}; \frac{xz}{y}\right)=(a,b,c)\)
\(\Rightarrow \left\{\begin{matrix} y^2=ab\\ x^2=ac\\ z^2=bc\end{matrix}\right.\)
Bài toán trở thành: Cho $a,b,c>0$ thỏa mãn \(ab+bc+ac=1\)
Tìm min $S=a+b+c$
Theo hệ quả quen thuộc của BĐT Cauchy: \((a+b+c)^2\geq 3(ab+bc+ac)\)
\(\Rightarrow S=\sqrt{(a+b+c)^2}\geq \sqrt{3(ab+bc+ac)}=\sqrt{3}\)
Vậy \(S_{\min}=\sqrt{3}\Leftrightarrow a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)