Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x, y, z > 0 thoản mãn : x(x - 1) + y(y - 1) + z(z - 1) ≤ \(\frac{4}{3}\) #Hỏi cộng đồng OLM #Toán lớp 9

\(\frac{4}{3}\ge x^2+y^2+z^2-x-y-z\ge\frac{1}{3}\left(x+y+z\right)^2-\left(x+y+z\right)\)
\(\Rightarrow\left(x+y+z\right)^2-3\left(x+y+z\right)-4\le0\)
\(\Rightarrow\left(x+y+z+1\right)\left(x+y+z-4\right)\le0\)
\(\Rightarrow x+y+z\le4\)
\(A_{max}=4\) ; \(A_{min}\) ko tồn tại (chỉ tồn tại khi x;y;z là số thực bất kì, khi đó \(A_{min}=-1\))
Cho hai điểm #Hỏi cộng đồng OLM #Toán lớp 9

1. \(\left(2018-2019\right)\) Cho đường tròn tâm \(\left(2016-2017\right)\) Cho tam giác đều ABC nội tiếp đường tròn tâm O. Điểm E thay đổi trên cung nhỏ AB (E khác A và B). Từ B và C lần lượt kẻ các tiếp tuyến với đường tròn (O), các tiếp tuyến này cắt đường thẳng AE theo thứ tự tại M và N. Gọi F là giao điểm của BN và CM
a) Chứng minh rằng \(MB.CN=BC^2\)
b) Khi điểm E thay đổi trên cung nhỏ AB. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định
3. \(\left(2015-2016\right)\) Cho tam giác nhọn \(AB>AC\). Các đường cao #Hỏi cộng đồng OLM #Toán lớp 9

Trên mặt phẳng tọa độ \(y=mx-\dfrac{5m}{3}\) (với #Hỏi cộng đồng OLM #Toán lớp 9

1) Cho #Hỏi cộng đồng OLM #Toán lớp 9

Cho hai điểm #Hỏi cộng đồng OLM #Toán lớp 9

1. \(\left(2018-2019\right)\) Cho đường tròn tâm \(\left(2016-2017\right)\) Cho tam giác đều ABC nội tiếp đường tròn tâm O. Điểm E thay đổi trên cung nhỏ AB (E khác A và B). Từ B và C lần lượt kẻ các tiếp tuyến với đường tròn (O), các tiếp tuyến này cắt đường thẳng AE theo thứ tự tại M và N. Gọi F là giao điểm của BN và CM
a) Chứng minh rằng \(MB.CN=BC^2\)
b) Khi điểm E thay đổi trên cung nhỏ AB. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định
3. \(\left(2015-2016\right)\) Cho tam giác nhọn \(\left(2014-2015\right)\) Cho tam giác ABC vuông ở A có đường cao AH, trên cạnh BC lấy điểm E, F sao cho CE = CA, BF = BA. Gọi I, I1, I2 lần lượt là tâm đường tròn nội tiếp các tam giác ABC, ABH, ACH và M là giao điểm của BI và AC. Chứng minh rằng
a) Ba điểm A, I1, E thẳng hàng và IE = IF
b) Đường thẳng FM là tiếp tuyến của đường tròn ngoại tiếp tam giác II1I2
5. \(\left(2013-2014\right)\) Cho tam giác \(AB=AC=a\), \(\widehat{BAC}=120^o\). Ký hiệu #Hỏi cộng đồng OLM #Toán lớp 9

Cho tam giác #Hỏi cộng đồng OLM #Toán lớp 9
Gõ công thức đoàng hoàng nhá bạn