
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(A=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3+x^3-3x^2\left(y+z\right)+3x\left(y+z\right)^2-\left(y+z\right)^3\)
\(=2x^3+6x\cdot\left(y+z\right)^2\)
=B

b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....

Giải:
2\(^{x+1}\).3\(^{y}\) = 12\(^{x}\)
2.2\(^{x}\).3.3\(^{y-1}\) = 12\(^{x}\)
2.3.3\(^{y-1}\) = 12\(^{x}\): 2\(^{x}\)
6.3\(^{y-1}\) = 6\(^{x}\)
3\(^{y-1}\) = 6\(^{x}\): 6
3\(^{y-1}\) = 6\(^{x-1}\)
\(\begin{cases}y-1=0\\ x-1=0\end{cases}\)
\(\begin{cases}y=1\\ x=1\end{cases}\)
Vậy cặp số tự nhiên thỏa mãn đề bài là: (\(x;y\)) = (1; 1)

ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
\(\dfrac{bz-cy}{a}=\dfrac{b.ck-c.bk}{a}=\dfrac{0}{a}=0\)(1)
\(\dfrac{cx-az}{b}=\dfrac{c.ak-a.ck}{b}=\dfrac{0}{b}=0\)(2)
\(\dfrac{ay-bz}{c}=\dfrac{a.bk-b.ak}{c}=\dfrac{0}{c}=0\)(3)
từ (1),(2) và(3) suy ra \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\left(đpcm\right)\)