K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

olm sẽ hướng dẫn em làm bài này như sau:

Bước 1: em giải phương trình tìm; \(x\); y

Bước 2:  thay\(x;y\) vào P

(\(x-1\))2022 + |y + 1| = 0

Vì (\(x-1\))2022 ≥ 0 ∀ \(x\); |y + 1| ≥ 0  ∀ y

⇒ (\(x\) - 1)2022  + |y + 1| = 0

⇔ \(\left\{{}\begin{matrix}\left(x-1\right)^{2022}=0\\y+1=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\) (1) 

Thay (1) vào P ta có:

12023.(-1)2022 : )(2.1- 1)2022 +  2023

=  1 + 2023

= 2024

16 tháng 12 2023

a+b+c=12

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

29 tháng 3 2023

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)

29 tháng 3 2023

giup mik nhiều quá hihi

22 tháng 10 2023

|x - 2| + |y - 1| + (x - y - z)²⁰²² = 0 (1)

Do |x - 2| ≥ 0 với mọi x ∈ R

|y - 1| ≥ 0 với mọi x ∈ R

(x - y - z)²⁰²² ≥ 0 với mọi x ∈ R

(1) ⇒  |x - 2| = |y - 1| = (x - y - z)²⁰²² = 0

*) |x - 2| = 0

x - 2 = 0

x = 2

*) |y - 1| = 0

y - 1 = 0

y = 1

*) (x - y - z)²⁰²² = 0

x - y - z = 0

2 - 1 - z = 0

1 - z = 0

z = 1

⇒ C = 26x - 3y²⁰²² + z²⁰²³

= 26.2 - 3.1²⁰²² + 1²⁰²³

= 52 - 3 + 1

= 50

13 tháng 6 2023

A = (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 đkxđ : y - 1 ≥ 0 ⇒ y ≥ 1

⇔ (\(x\) + 1)2022 + (\(\sqrt{y-1}\))2023 = 0

vì (\(x\) + 1)2022 ≥ 0; \(\sqrt{y-1}\) ≥ 0  ⇒ (\(\sqrt{y-1}\))2023 ≥ 0

Nên A = 0 ⇔ \(\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\)

             ⇔  \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Nghiệm của A là: \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

24 tháng 8 2023

\(M=x^{2023}-2023.\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)

Ta có : \(x=2022\Rightarrow x+1=2023\)

\(\Rightarrow M=x^{2023}-\left(x+1\right).\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)

\(\Rightarrow M=x^{2023}-\left(x+1\right)x^{2022}+\left(x+1\right)x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}+...-\left(x+1\right)x^2+\left(x+1\right)x\)

\(\Rightarrow M=x^{2023}-x^{2023}-x^{2022}+x^{2022}+x^{2021}-x^{2021}-x^{2020}+x^{2020}+x^{2019}-x^{2019}-...-x^3-x^2+x^2+x\)

\(\Rightarrow M=x\)

\(\Rightarrow M=2022\)

Vậy \(M=2022\left(tạix=2022\right)\)

7 tháng 9

Đây nhé bé

Câu1

\(\mid x \mid \geq 0 \Rightarrow \mid x \mid + 1 \geq 1\).
Do đó \(\left(\right. \mid x \mid + 1 \left.\right)^{10} \geq 1^{10} = 1\).

Suy ra:

\(A = \left(\right. \mid x \mid + 1 \left.\right)^{10} + 2023 \geq 1 + 2023 = 2024.\)

Dấu “=” chỉ xảy ra khi \(\mid x \mid = 0 \Leftrightarrow x = 0\).

\(\Rightarrow\) Giá trị nhỏ nhất của \(A\)\(\boxed{2024}\), đạt tại \(x = 0\).

Câu 2 ( câu này kiến thức nâng cao nhé em nên là khi em đọc lời giải sẽ có khó hiểu nhé )

Đặt \(n = 2022\). Khi đó:

\(A = \frac{n^{2022} + 1}{n^{2023} + 1} , B = \frac{n^{2021} + 1}{n^{2022} + 1} .\)

Xét tổng quát với \(a_{k} = \frac{n^{k} + 1}{n^{k + 1} + 1} , \left(\right. n > 1 \left.\right)\).

Ta gọi k là luỹ thừa của cơ số

\(a_{k} > a_{k - 1} \textrm{ }\textrm{ } \Longleftrightarrow \textrm{ }\textrm{ } \left(\right. n^{k} + 1 \left.\right)^{2} > \left(\right. n^{k + 1} + 1 \left.\right) \left(\right. n^{k - 1} + 1 \left.\right) .\)

Xét hiệu:

\(\left(\right.n^{k}+1\left.\right)^2-\left(\right.n^{k+1}+1\left.\right)\left(\right.n^{k-1}+1\left.\right)=-n^{k-1}\left(\right.n-1\left.\right)^2<0\)

Vậy \(a_{k} < a_{k - 1}\), tức dãy \(\left(\right. a_{k} \left.\right)\) giảm dần theo \(k\)

Do đó:

\(A = a_{2022} < a_{2021} = B .\)

\(\Rightarrow B>A\)

Câu3

Ta đổi : \(27 = 3^{3}\), \(9 = 3^{2}\), \(125 = 5^{3}\).

\(\frac{5^{16} \cdot \left(\right. 3^{3} \left.\right)^{7}}{\left(\right. 5^{3} \left.\right)^{5} \cdot \left(\right. 3^{2} \left.\right)^{11}} = \frac{5^{16} \cdot 3^{21}}{5^{15} \cdot 3^{22}} = 5^{16 - 15} \cdot 3^{21 - 22} = \frac{5}{3} .\)

Vậy kết quả bằng \(\frac{5}{3}\).

Câu 3:

\(\frac{5^{16}\cdot27^7}{125^5\cdot9^{11}}\)

\(=\frac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}=\frac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}\)

\(=\frac53\)

Câu 2:

\(2022A=\frac{2022^{2023}+2022}{2022^{2023}+1}=1+\frac{2021}{2022^{2023}+1}\)

\(2022B=\frac{2022^{2022}+2022}{2022^{2022}+1}=1+\frac{2021}{2022^{2022}+1}\)

Ta có: \(2022^{2023}+1>2022^{2022}+1\)

=>\(\frac{2021}{2022^{2023}+1}<\frac{2021}{2022^{2022}+1}\)

=>\(\frac{2021}{2022^{2023}+1}+1<\frac{2021}{2022^{2022}+1}+1\)

=>2022A<2022B

=>A<B

Câu 1:

\(\left|x\right|\ge0\forall x\)

=>\(\left|x\right|+1\ge1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}\ge1^{10}=1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}+2023\ge1+2023=2024\forall x\)

Dấu '=' xảy ra khi x=0