Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xl vì mình ko vẽ hình cho bạn đc
a) Kẻ Ox' là tia đối của Ox
Ta có: \(\widehat{x'Oy}\)+ \(\widehat{yOx}\)= 180*
Mà \(\widehat{yOx}\)= 150*
=> \(\widehat{x'Oy}\)= 180* -150 * = 30*
Ta lại có : \(\widehat{x'Oy}\)= \(\widehat{zAO}\)(30*) mà hai góc này lại là 2 góc so le trong
Suy ra Oy // Az mà Az' lại là tia đối của Az => Oy // zz'
b) Vì Oy // Az (hay zz') chứng minh trên
Suy ra \(\widehat{yOA}\)= \(\widehat{zAx}\)
Mà OM là pg của \(\widehat{yOA}\)và On là pg của \(\widehat{zAx}\)
=> \(\widehat{MOA}\)= \(\widehat{NAx}\)( 2 góc so le trong)
Từ đó ta biết đc OM // AN (Đpcm)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

a/Vì \(\widehat{xOy}>\widehat{xOt}\)\(\left(70^o>35^o\right)\)nên Ot nằm giữa Õ và Oy
Ta có : \(\widehat{xOt}+\widehat{tOy}=\widehat{xOy}\)
Thay : \(35^o+\widehat{tOy}=70^o\)
\(\Rightarrow\widehat{tOy}=70^o-35^o\)
\(\Rightarrow\widehat{tOy}=35^o\)
b/ Ot hay Oy [ mình nghĩ bạn ghi sai đề, đáng lẽ là Ot chứ ]
Ot là tia phân giác của \(\widehat{xOy}\)vì Ot nằm giữa và \(\widehat{xOt}=\widehat{tOy}=35^o\)
c/
Vì Om là tia đối của Ot nên \(\widehat{tOy}\)và \(\widehat{mOy}\)kề bù :
Nên : \(\widehat{tOy}+\widehat{mOy}=180^o\)
Thay : \(35^o+\widehat{mOy}=180^o\)
\(\Rightarrow\widehat{mOy}=180^o-35^o\)
Vậy : \(\widehat{mOy}=145^o\)

y O A z u v x
a) Vì Oy // Az nên ta có:
\(\widehat{xOy}=\widehat{xAz}\left(=35^o\right)\)( hai góc đồng vị )
Hai góc \(\widehat{OAz}\)và \(\widehat{xAz}\)kề bù nên ta có:
\(\widehat{OAz}+\widehat{xAz}=180^o\Rightarrow\widehat{OAz}+35^o=180^o\)
\(\Rightarrow\widehat{OAz}=180^o-35^o=145^o\)
b) Vì Ou là tia phân giác của \(\widehat{xOy}\)
\(\Rightarrow\widehat{xOu}=\widehat{yOu}=\frac{\widehat{xOy}}{2}=\frac{35^o}{2}=17,5^o\)
Mặt khác, vì Av là tia phân giác \(\widehat{xAz}\)
\(\Rightarrow\widehat{xAv}=\widehat{zAv}=\frac{\widehat{xAz}}{2}=\frac{35^o}{2}=17,5^o\)
Như vậy \(\widehat{xOu}=\widehat{xAv}=17,5^o\)
Hai góc \(\widehat{xOu}\)và \(\widehat{xAv}\)bằng nhau và chiếm vị trí đồng vị
=> Ou // Av ( đpcm )

1. x O x' y y'
Giải: a) Ta có: \(\widehat{xOy}+\widehat{yOx'}=180^0\) (kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-75^0=105^0\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOy}=75^0\) => \(\widehat{x'Oy'}=75^0\)
\(\widehat{yOx'}=\widehat{xOy'}\) (đối đỉnh)
Mà \(\widehat{yOx'}=105^0\) => \(\widehat{xOy'}=105^0\)
1b) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)
mà \(\widehat{x'Oy}-\widehat{xOy}=30^0\)
=> \(2.\widehat{x'Oy}=210^0\)
=> \(\widehat{x'Oy}=210^0:2=105^0\) => \(\widehat{x'Oy}=\widehat{xOy'}=105^0\) (đối đỉnh)
=> \(\widehat{xOy}=180^0-105^0=75^0\) => \(\widehat{xOy}=\widehat{x'Oy'}=75^0\) (đối đỉnh)
2. O x y x' y' m m'
Giải: a) Ta có: \(\widehat{xOm}=\widehat{x'Om'}\) (đối đỉnh)
\(\widehat{mOy}=\widehat{m'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}\) (gt)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}\)
Ta lại có: \(\widehat{xOy}=\widehat{x'Oy'}\) (đối đỉnh)
Mà \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}.\widehat{xOy}\) (vì Om là tia p/giác)
=> \(\widehat{x'Om'}=\widehat{m'Oy'}=\frac{1}{2}.\widehat{xOy}\)
=> Om' nằm giữa Ox' và Oy'
=> Om' là tia p/giác của góc x'Oy'
b) Tự viết

120 y x m y' m d c O
a) Ta có: \(\widehat{xOy}=120^o\)
có Om là tia phân giác
=> \(\widehat{mOy}=\widehat{mOx}=120^o:2=60^o\)
Oy' là tia đối tia Oy
=> \(\widehat{yOy'}=180^o\)
=> \(\widehat{xOy'}=\widehat{yOy'}-\widehat{yOx}=180^o-120^o=60^o\)
=> \(\widehat{xOy'}=\widehat{xOm}=60^o\)
Mặt khác Ox nằm giữa hai tia Om, Oy'
=> Õx là phân giác góc y'Om
b) Ta có: Od nằm phóa ngoài góc xOy
Oy' nằm phía ngoài góc xOy
Mà \(\widehat{xOy'}=60^o< 90^o=\widehat{xOd}\)
=> Oy' nằm giữa hai tia Ox, Od
c) \(\widehat{mOc}=\widehat{mOy}+\widehat{yOc}=60^o+90^o=150^o\)
d) Ta có: On là phân giác góc dOc
mà \(\widehat{dOc}=360^o-\widehat{xOy}-\widehat{xOd}-\widehat{yOc}=60^o\)
=>\(\widehat{dOn}=\widehat{nOc}=60^o:2=30^o\)
=> \(\widehat{mOn}=\widehat{mOc}+\widehat{cOn}=150^O+30^O=180^O\)

Những bài này có thể search trên google trước khi làm nhé
Link tham khảo :
Câu hỏi của Vương Hàn - Toán lớp 7 | Học trực tuyến
Good Luck
bạn có sai đề k vậy ???
sai thì đăng chi