Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nha
a, Vì Ot là phân giác \(\widehat{xOy}\)=> \(\widehat{xOt}\)\(=\widehat{tOy}\)\(=\frac{1}{2}120^o\)\(=60^o\)
b, Vì At'//Ot => \(\widehat{yAt'}=\widehat{AOt}\)\(=60^o\) ( 2 góc đồng vị)
Vì Ax'// Ox=>\(\widehat{yAx'}=\widehat{AOx}=70^o\)
chúc bạn học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
x O z y t A B C M H K I N
Gọi I là giao điểm của MC và OB; MC giao Ox tại N
Từ điểm I kẻ IH vuông góc với MA tại H; IK vuông góc với tia Ox tại K
Góc ^xOz=1200, phân giác Oy => ^xOy=^yOz=600
Do Ot là phân giác ^xOy => OC là phân giác góc ^NOI. Mà OC vuông góc với NI
=> Tam giác ONI cân tại O
Lại có ^NOI hay ^xOy=600 => Tam giác NOI là tam giác đều
Ta thấy tam giác NOI có 2 đường cao OC và IK => OC=IK (1)
Ta có: IH và KA vuông góc với AM => IM // KA (Quan hệ //, vuông góc)
Tương tự: IK // AH
=> IH=KA; IK=AH (t/c đoạn chắn) (2)
Từ (1) và (2) => OC=AH (*)
Do tam giác NOI đều => ^OIN=600 => ^BIM=600 (Đối đỉnh) (3)
IH//KA (cmt) => IH//ON. Mà ^ONI=600 => ^HIM=600 (4)
(3); (4) => ^BIM=^HIM
=> C/m được \(\Delta\)IBM=\(\Delta\)IHM (Cạnh huyền góc nhọn) => MB=MH
=> MA - MB = MA - MH = AH (**)
Từ (*) và (**) => MA - MB = OC (đpcm).
Chúc bạn học tốt !
=> MA - MB = MA - MH = AH (**)
Từ (*) và (**) => MA - MB = OC (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
vì ot vuông góc với oy => góc xot =90 độ
mà ot là tia phân giác của góc xoy => góc xoy=2.xot =180 độ
vì góc xoz nằm trong góc xoy và góc xoz =4.yoz
=> yoz+4yoz=180 độ
=> 5yoz = 180 độ
=> yoz=36
=> xoz=36.4=144
p/s: đề bảo tính một mk xoy nhưng họ cho cả xoz, yoz mk nghĩ pk có liên quan nên tính thêm :>
Xin lỗi bạn Tiểu Hy_Queen, nhưng bạn đã làm sai rồi. Đáp án :\(\widehat{xOy}\)=150 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì Om là phần giác của \(\widehat{zOt}\)
=> \(\widehat{mOz}=\widehat{mOt}\)
Mặt khác : \(\widehat{zOy}=\widehat{tOx}=30^0\)
=> \(\widehat{mOz}+\widehat{zOy}=\widehat{mOt}+\widehat{tOx}\)
=> \(\widehat{yOm}=\widehat{mOx}\)
Vậy Om cũng là phân giác của \(\widehat{xOy}\)
x O y Z Z' t t' x' y'
a)OZ pg tOy vì tOz=zOy
b)t'Ox'<y'Ox vì mình nhìn thấy thế :)