K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi giao điểm của AK và BD là O

hay AK cắt BD tại O(1)

Xét ΔADB có

BQ là đường trung tuyến ứng với cạnh AD

DM là đường trung tuyến ứng với cạnh AB

BQ và DM cắt nhau tại K

Do đó: K là trọng tâm của ΔADB

Suy ra: O là trung điểm của BD

Xét ΔBCD có 

BN là đường trung tuyến ứng với cạnh DC

DP là đường trung tuyến ứng với cạnh BC

BN cắt DP tại G

Do đó: G là trọng tâm của ΔBCD

Suy ra: AG là đường trung tuyến ứng với cạnh BD

mà AO là đường trung tuyến ứng với cạnh BD

và AG,AO có điểm chung là A

nên A,G,O thẳng hàng

hay CG cắt DB tại O(2)

từ (1), (2) và (3) suy ra BD,AK,CG đồng quy

4 tháng 9 2021

Gọi giao điểm của AK và BD là O

hay AK cắt BD tại O(1)

Xét ΔADB có

BQ là đường trung tuyến ứng với cạnh AD

DM là đường trung tuyến ứng với cạnh AB

BQ và DM cắt nhau tại K

Do đó: K là trọng tâm của ΔADB

Suy ra: O là trung điểm của BD

Xét ΔBCD có 

BN là đường trung tuyến ứng với cạnh DC

DP là đường trung tuyến ứng với cạnh BC

BN cắt DP tại G

Do đó: G là trọng tâm của ΔBCD

Suy ra: AG là đường trung tuyến ứng với cạnh BD

mà AO là đường trung tuyến ứng với cạnh BD

và AG,AO có điểm chung là A

nên A,G,O thẳng hàng

hay CG cắt DB tại O(2)

từ (1), (2) và (3) suy ra BD,AK,CG đồng quy

HT~

(nhớ tiick tôi)

a: Gọi O là giao điểm của AC và BD

ABCD là hình thoi

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Ta có: \(AM=MB=\frac{AB}{2}\)

\(CN=DN=\frac{CD}{2}\)

mà AB=CD

nên AM=MB=CN=DN

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

=>AN//CM và AN=CM(2)

Xét ΔBAC có

BO,CM là các đường trung tuyến

CM cắt BO tại K

Do đó: K là trọng tâm của ΔABC

=>\(CK=\frac23CM\) (1)

Xét ΔACD có

AN,DO là các đường trung tuyến

AN cắt DO tại H

Do đó: H là trọng tâm của ΔACD

=>\(AH=\frac23AN\) (3)

Từ (1),(2),(3) suy ra CK=AH

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

b: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

=>AC,BD,MN đồng quy tại O

18 tháng 8

a) Chứng minh tứ giác \(A K H C\) là hình thoi

  • Gọi \(O\) là giao điểm hai đường chéo \(A C\)\(B D\). Trong hình thoi, \(O\) là trung điểm của cả \(A C\)\(B D\), đồng thời \(A C \bot B D\).
  • Xét tam giác \(A B C\), có \(M\) là trung điểm của \(A B\), \(O\) là trung điểm của \(A C\). Suy ra:

\(O M \parallel B C \left(\right. đườ n g t r u n g b \overset{ˋ}{\imath} n h \left.\right) .\)

  • Xét tam giác \(A C D\), có \(N\) là trung điểm của \(C D\), \(O\) là trung điểm của \(A C\). Suy ra:

\(O N \parallel A D .\)

  • \(A D \parallel B C\) (tính chất hình thoi), do đó:

\(O M \parallel O N .\)

Suy ra \(M N \parallel A C\).

  • Xét tứ giác \(A K H C\):
    • \(A , C\) nằm trên đường chéo \(A C\).
    • \(H , K\) nằm trên đường chéo \(B D\).
    • Ta có \(A C \bot B D\).

⇒ Hai đường chéo của tứ giác \(A K H C\) vuông góc nhau và cắt nhau tại trung điểm (chính là \(O\)).

Do đó \(A K H C\)hình thoi.


b) Chứng minh \(A C , B D , M N\) đồng quy

  • Từ trên, ta đã có \(M N \parallel A C\).
  • \(A C\)\(B D\) cắt nhau tại \(O\).
  • \(M N \parallel A C\), nên đường thẳng \(M N\) cắt \(B D\) tại đúng một điểm, gọi là \(P\).
  • Dễ thấy \(P\) chính là giao điểm chung của \(B D\)\(M N\). Do \(M N \parallel A C\), nên ba đường thẳng \(A C , B D , M N\) cùng đi qua một điểm:

\(A C \cap B D = O , M N \cap B D = P , m \overset{ˋ}{a} O \in M N .\)

\(A C , B D , M N\) đồng quy tại \(O\).


Kết luận:

a) Tứ giác \(A K H C\)hình thoi.
b) Ba đường thẳng \(A C , B D , M N\) đồng quy tại giao điểm \(O\).

Tham Khảo bạn nhé

16 tháng 11 2021

a: Xét tứ giác AICK có 

AI//CK

AI=CK

Do đó: AICK là hình bình hành

13 tháng 12 2016

a,Xet tam giac ABC co : 

AM=MB va BN=NC

=> MN la dtb => MN=1/2AC va MN//AC (1)

Xet tam giac ADC co : 

DQ=QA va DP=PC

=> QP la dtb => QP=1/2AC va MN//AC (2)

Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)

Hay tu giac MNPQ la HBH

b, Xet tu giac MDPB co : 

AB//DC=>MB//DP

AB=DC mà AM=MB va DP=PC

=> MB=DP

Hay tu giac MDPB la HBH

c, mk k bt lm xl bn

a,Xet tam giac ABC co : 

AM=MB va BN=NC

=> MN la dtb => MN=1/2AC va MN//AC (1)

Xet tam giac ADC co : 

DQ=QA va DP=PC

=> QP la dtb => QP=1/2AC va MN//AC (2)

Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)

Hay tu giac MNPQ la HBH

b, Xet tu giac MDPB co : 

AB//DC=>MB//DP

AB=DC mà AM=MB va DP=PC

=> MB=DP

Hay tu giac MDPB la HBH

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
a. 

Vì $ABCD$ là hình bình hành nên $AB\parallel CD$

$\Rightarrow AG\parallel CH$

$AG=\frac{1}{2}AB; CH=\frac{1}{2}CD; AB=CD$ (theo tính chất hbh)

$\Rightarrow AG=CH$

Tứ giác $AGCH$ có $AG=CH$ và $AG\parallel CH$ nên đây là hbh

$\Rightarrow AH=CG$

b.

Hoàn toàn tương tự phần a, ta cm được $BF=DE$ và $BF\parallel DE$ nên $BFDE$ là hình bình hành

$\Rightarrow BE\parallel DF$

c.

Vì $BE\parallel DF$ nên $MN\parallel PQ(1)$

Vì $AGCH$ là hình bình hành nên $AH\parallel CG$

$\Rightarrow MQ\parallel NP(2)$
Từ $(1);(2)\Rightarrow MNPQ$ là hình bình hành.

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Hình vẽ: