![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi O là giao điểm 2 đường chéo của tứ giác ABCD.
Xét :Tam giác BOC có: BC < OB + OC (bất đẳng thức trong tam giác)
Tam giác AOD có: AD < OD + OA (.............................................)
Do đó: BC + AD < (OB + OD) +(OC + OA)
hay BC + AD < BD + AC
Mà AD = AC (GT) => BC < BD.
A B C D O
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi O là giao điểm của hai đường chéo AC và AD .
Xét \(\Delta AOD\)có :
\(AD< AO+OD\)(1)
Xét \(\Delta BOC\)có :
\(BC< OC+BO\)(2)
tỪ (1) VÀ (2)
Cộng vế với vế ta được :
\(AD+BC< AC+BD\)(3)
Theo đề bài ta có :
\(AC=AD\)
\(\Rightarrow BC< BD\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
P/s : Chứng minh rằng AC + BD < AB + BC + CD + DA .
Gọi O là giao điểm của hai đường chéo AC và BD .
Ta có :
Xét tam giác OAB có :
\(OA+OB>AB\) ( bất đẳng thức trong tam giác ) (1)
Xét tam giác OBC có :
\(OB+OC>BC\)( BĐT tam giác ) (2)
Xét tam giác ODC có :
\(OD+OC>DC\) (BĐT tam giác )(3)
Xét tam giác OAD có :
\(OA+OD>AD\) (4)
Cộng từng vế ta có :
\(AC+BD< AB+BC+CD+DA\) (đpcm)
Dựa vào BĐT tam giác ta có:
AO+OB>AB
OB+OC>BC
OC+OD>CD
OD+OA>AD
=>OA+OB+OB+OC+OC+OD+OD+OA>AB+BC+CD+DA
=>2(AC+BD)>AB+BC+CD+DA(ĐPCM)