\(5^1\)+ \(5^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

T=\(5^1+5^2+...+5^{2017}\)

=> 5T=\(5^2+5^3+...+5^{2018}\)

=> 5T- T=\(5^{2018}-5\)

=>4T=\(\overline{...5}-5=\overline{...0}\)(Vì 5 lũy thừa bao nhiu cũng có tận cùng là chinh nó)

=> T=\(\overline{...0}\)

Vậy cstc của T là 0

6 tháng 7 2017

Các bn giải dùm mk nha !!!

Thanks everyone

Ai giải đc thì kb nha

27 tháng 7 2016

Ta có:

22014 + 32015 + 52016

= 22012.2+ 32012.33 + (...5)

= (24)503.4 + (34)503.27 + (...5)

= (...6)503.4 + (...1)503.27 + (...5)

= (...6).4 + (...1).27 + (...5)

= (...4) + (...7) + (...5)

= (...1) + (...5)

= (...6)

27 tháng 7 2016

Ta có:

22014 + 32015 + 52016

= 22012.2+ 32012.33 + (...5)

= (24)503.4 + (34)503.27 + (...5)

= (...6)503.4 + (...1)503.27 + (...5)

= (...6).4 + (...1).27 + (...5)

= (...4) + (...7) + (...5)

= (...1) + (...5)

= (...6)

22 tháng 1 2017

1.

a) ( x + 1 )2 _ 1 = 15

( x + 1 )2 = 15+1

( x + 1 )2 = 16

x + 1 = 4 hoặc x + 1 = -4

x = 4 - 1 hoặc x = -4 + 1

x = 3 hoặc x = -3

22 tháng 1 2017

b) (x - 2017)x + 2017 = ( x - 2017 )x + 2011

x + 2017 = x + 2011

x = x + 2011 - 2017

x = x + 6

Không có x thỏa mãn

4 tháng 7 2017

bạn ghi thế này tớ k hiểu

4 tháng 7 2017

Tớ ghi giống y hệt đề mà

21 tháng 6 2016

undefined

21 tháng 6 2016

\(B=5^{2016}+2^{2017}\)

\(B=\left(...5\right)+\left(...4\right)^{1008}.2\)

\(B=\left(...5\right)+\left(...6\right)^{504}.2\)

\(B=\left(...5\right)+\left(...2\right)=\left(...7\right)\)

Vậy B có chữ số tận cùng là 7

\(C=7^{2015}+5\cdot2^{100}\)

\(C=\left(...9\right)^{1007}\cdot7+5\cdot\left(...4\right)^{50}\)

\(C=\left(...1\right)^{503}\cdot9\cdot7+5\cdot\left(...6\right)^{25}\)

\(C=\left(...3\right)+\left(...0\right)=\left(...3\right)\)

Vậy C có chữ số tận cùng là 3

\(D=405^n+2^{405}\)

\(D=\left(...5\right)+\left(...4\right)^{202}\cdot2\)

\(D=\left(...5\right)+\left(...6\right)^{101}\cdot2\)

\(D=\left(...5\right)+\left(...2\right)=\left(...7\right)\)

Vậy D có chữ số tận cùng là 7

31 tháng 1 2019

1,

\(\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot\dfrac{15}{4^2}...\dfrac{899}{30^2}\\ =\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}....\dfrac{29\cdot31}{30\cdot30}\\ =\left(\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot....\cdot30}\right)\cdot\left(\dfrac{3\cdot4\cdot5\cdot....\cdot31}{2\cdot3\cdot4.....\cdot30}\right)\\ =\dfrac{1}{30}\cdot\dfrac{31}{2}\\ =\dfrac{31}{60}\)

2,

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{37\cdot38\cdot39}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{37\cdot38\cdot39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}+....+\dfrac{1}{37\cdot38}-\dfrac{1}{38\cdot39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{38\cdot39}\right)\\ =\dfrac{1}{4}-\dfrac{1}{3964}\\ =\dfrac{185}{741}\)

3, Làm tương tự, áp dụng ; \(\dfrac{n}{x\left(x+n\right)}=\dfrac{1}{x}-\dfrac{1}{x+n}\)

11 tháng 9 2018

4^3^10=4^30=(4^2)^15=..........6^15=...........6

2^2^5=2^10=(2^4)^2 . 2^2=...........6^2 . ...........4=.............4

2^3^4=2^12=(2^4)^3=.............6^3=...............6

3^3^3=3^9=(3^4)^2 . 3=..............1^2 . 3=..............3

9^9^9=9^81=(9^2)^80 . 9=..............1^80 . 9=.................9

16 tháng 6 2018

\(a)\) \(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(2S-S=\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)\)

\(S=2^{2018}-1\)

\(b)\) \(S=3+3^2+3^3+...+3^{2017}\)

\(3S=3^2+3^3+3^4+...+3^{2018}\)

\(3S-S=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3+3^2+3^3+...+3^{2017}\right)\)

\(2S=3^{2018}-3\)

\(S=\frac{3^{2018}-3}{2}\)

\(c)\) \(S=4+4^2+4^3+...+4^{2017}\)

\(4S=4^2+4^3+4^4+...+4^{2018}\)

\(4S-S=\left(4^2+4^3+4^4+...+4^{2018}\right)-\left(4+4^2+4^3+...+4^{2017}\right)\)

\(3S=4^{2018}-4\)

\(S=\frac{4^{2018}-4}{3}\)

\(d)\) \(S=5+5^2+5^3+...+5^{2017}\)

\(5S=5^2+5^3+5^4+...+5^{2018}\)

\(5S-S=\left(5^2+5^3+5^4+...+5^{2018}\right)-\left(5+5^2+5^3+...+5^{2017}\right)\)

\(4S=5^{2018}-5\)

\(S=\frac{5^{2018}-5}{2}\)

Chúc em học tốt ~ 

16 tháng 6 2018

Tks anh ạ