cho t...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
30 tháng 8 2023

a) \(16x^2-1\)

\(=\left(4x\right)^2-1^2\)

\(=\left(4x-1\right)\left(4x+1\right)\)

b) \(\left(x+2\right)^2-49y^2\)

\(=\left(x+2\right)^{^2}-\left(7y\right)^2\)

\(=\left[\left(x+2\right)-7y\right]\left[\left(x+2\right)+7y\right]\)

\(=\left(x+2-7y\right)\left(x+2+7y\right)\)

c) \(4x^2-12xy+9y^2\)

\(=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\)

\(=\left(2x-3y\right)^2\)

d) \(\left(a+b\right)^2-\left(2a-b\right)^2\)

\(=\left[\left(a+b\right)+\left(2a-b\right)\right]\left[\left(a+b\right)-\left(2a-b\right)\right]\)

\(=\left(a+b+2a-b\right)\left(a+b-2a+b\right)\)

\(=3a\cdot\left(2b-a\right)\)

e) \(\left(x-y\right)^2-2\left(x-y\right)z+z^2\)

\(=\left[\left(x-y\right)-z\right]^2\)

\(=\left(x-y-z\right)^2\)

g) \(-3x^2+6xy-3y^2\)

\(=-\left(3x^2-6xy+3y^2\right)\)

\(=-3\left(x^2-2xy+y^2\right)\)

\(=-3\left(x-y\right)^2\)

a: 16x^2-1=(4x)^2-1=(4x-1)(4x+1)

b: (x+2)^2-49y^2

=(x+2)^2-(7y)^2

=(x+2+7y)(x+2-7y)

c: 4x^2-12xy+9y^2=(2x-3y)^2

d: (a+b)^2-(2a-b)^2

=(a+b+2a-b)(a+b-2a+b)

=(2b-a)*3a

g: =-3(x^2-2xy+y^2)

=-3(x-y)^2

26 tháng 7

26 tháng 7

a: Xét tứ giác DIHK có

góc DIH=góc DKH=góc KDI=90 độ

nên DIHK là hình chữ nhật

b: Xét tứ giác IHAK có

IH//AK

IH=AK

Do đó: IHAK là hình bình hành

=>B là trung điểm chung của IA và HK

Xét ΔIKA có IC/IK=IB/IA

nên BC//KA

Xét ΔIDA có IB/IA=IM/ID

nên BM//DA

=>B,C,M thẳng hàng

31 tháng 8

bạn bị lừa thì cô và OLM hoàn lại cho bạn đó lần sau cảnh giác nha

x-2-1012
y41014

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Ta có bảng sau:

\(x\)

–2

–1

0

1

2

\(y\)

4

1

0

1

4

NV
30 tháng 8

\(x+y+z=0\rArr\left(x+y+z\right)^2=0\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\rArr x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\rArr x^2+y^2+z^2=0\) (do \(xy+yz+xz=0\) )

\(\rArr x=y=z=0\)

Do đó:

\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}=-1+0+1=0\)

Ta có: x+y+z=0

=>\(\left(x+y+z\right)^2=0^2=0\)

=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

=>\(x^2+y^2+z^2=0\)

\(x^2\ge0\forall x;y^2\ge0\forall y;z^2\ge0\forall z\)

nên \(\begin{cases}x=0\\ y=0\\ z=0\end{cases}\)

\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}\)

\(=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}\)

=-1+0+1

=0

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

11 tháng 9 2023

Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

Xét tứ giác ABCD có:

\(\begin{array}{l} \widehat A  + \widehat  B + \widehat C  + \widehat  D  = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)