Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AD\cdot AB=AE\cdot AC\)
Đề bài tóm tắt:
- Tam giác \(A B C\) vuông tại \(A\), với \(A B < A C\).
- \(A H\) là đường cao từ \(A\) xuống \(B C\).
- \(D , E\) lần lượt là hình chiếu của \(H\) lên \(A B\) và \(A C\).
a) Chứng minh: \(A D \cdot A B = A E \cdot A C\)
Phân tích:
- \(D\) là hình chiếu của \(H\) trên \(A B\), nên \(H D \bot A B\).
- \(E\) là hình chiếu của \(H\) trên \(A C\), nên \(H E \bot A C\).
- Ta cần chứng minh tích đoạn thẳng: \(A D \times A B = A E \times A C\).
Cách chứng minh:
- Xét tam giác vuông \(A B C\) vuông tại \(A\), ta có \(A H\) là đường cao nên các tam giác nhỏ tạo ra đều có tỉ lệ thuận.
- Vì \(D\) là hình chiếu \(H\) trên \(A B\), nên \(H D \bot A B\), do đó \(H D\) là đường cao trong tam giác \(A H B\). Tương tự \(H E\) là đường cao trong tam giác \(A H C\).
- Trong tam giác \(A H B\), theo định lý về đường cao trong tam giác vuông, ta có:
\(A D = A H \cdot cot \left(\right. \angle H A B \left.\right)\)
Tương tự trong tam giác \(A H C\):
\(A E = A H \cdot cot \left(\right. \angle H A C \left.\right)\)
- Vì \(A B < A C\) và tam giác vuông tại \(A\), nên \(\angle H A B\) và \(\angle H A C\) liên hệ với các cạnh \(A B , A C\).
- Từ các góc và tỉ số, ta có:
\(\frac{A D}{A E} = \frac{A B}{A C}\)
Suy ra:
\(A D \cdot A C = A E \cdot A B\)
Đổi vế thành:
\(A D \cdot A B = A E \cdot A C\)
b) Trên tia đối của tia \(A B\) lấy điểm \(F\) sao cho \(A F < A B\); vẽ hình chữ nhật \(A C G F\), \(B G\)cắt \(A C\) tại \(N\).
Yêu cầu: Chứng minh ...

a.
Do D, E là hình chiếu của H lên AB, AC \(\Rightarrow\angle ADH=\angle AEH=90^0\)
Tam giác ABC vuông tại A nên \(\angle A=90^0\)
=>ADHE là hình chữ nhật (tứ giác có 3 góc vuông)
\(\Rightarrow\angle ADE=\angle AHE\)
Mà \(\angle AHE=\angle ACB\) (cùng phụ ∠CAH)
\(\Rightarrow\angle ADE=\angle ACB\)
Xét hai tam giác ADE và ACB có:
∠A là góc chung
∠ADE=∠ACB (cmt)
=>ΔADE∼ΔACB(g.g)
\(\Rightarrow\frac{AD}{AC}=\frac{AE}{AB}\Rightarrow AD.AB=AE.AC\)
b.
Do ACGF là hcn nên CG||AF =>∠CGN=∠GBF (so le trong)
\(\Rightarrow\cos\angle CGN=\cos\angle GBF\)
\(\Rightarrow\frac{CG}{GN}=\frac{BF}{BG}\)
Mà ACGF là hcn nên CG=AF \(\Rightarrow\frac{AF}{GN}=\frac{BF}{BG}\) (1)
Trong tam giác vuông BGF, áp dụng định lý Pitago:
\(GF^2+BF^2=BG^2\Rightarrow AC^2+BF^2=BG^2\) (do ACGF là hcn nên GF=AC)
\(\Rightarrow\frac{AC^2}{BG^2}+\left(\frac{BF}{BG}\right)^2=1\) (2)
(1);(2) \(\Rightarrow\frac{AC^2}{BG^2}+\frac{AF^2}{GN^2}=1\Rightarrow\frac{1}{BG^2}+\frac{AF^2}{AC^2}\cdot\frac{1}{GN^2}=\frac{1}{AC^2}\)
Trong tam giác vuông ACF, ta có \(\cot CFB=\frac{AF}{AC}=>\frac{AF^2}{AC^2}=\cot^2CFB\)
\(\Rightarrow\frac{\cot^2CFB}{GN^2}+\frac{1}{BG^2}=\frac{1}{AC^2}\)

https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html

Xét (O) có
^ABC = 900 ( góc nr chắn nửa đường tròn )
=> ^ABD' = 900
=> AD' là đường kính của đường tròn (O') ; B là điểm thuộc đường tròn
=> A;O';D thẳng hàng
a: ΔSHB vuông tại S
=>\(SH^2+SB^2=HB^2\)
=>\(SB^2=35^2-21^2=\left(35-21\right)\left(35+21\right)=14\cdot56=14\cdot14\cdot4=14^2\cdot2^2=28^2\)
=>SB=28
Xét ΔBSH vuông tại S có SC là đường cao
nên \(BC\cdot BH=BS^2\)
=>\(BC=\frac{28^2}{35}=22,4\left(\operatorname{cm}\right)\)
b: Xét ΔSCH vuông tại C có CT là đường cao
nên \(ST\cdot SH=SC^2\left(1\right)\)
Xét ΔSCB vuông tại C có CV là đường cao
nên \(SV\cdot SB=SC^2\left(2\right)\)
Từ (1),(2) suy ra \(ST\cdot SH=SV\cdot SB\)
c: Xét tứ giác STCV có \(\hat{STC}=\hat{SVC}=\hat{VST}=90^0\)
nên STCV là hình chữ nhật
=>\(\hat{SVT}=\hat{SCT}\)
mà \(\hat{SCT}=\hat{SHC}\left(=90^0-\hat{CSH}\right)\)
nên \(\hat{SVT}=\hat{SHB}\)
Ta có: SM⊥VT
=>\(\hat{MSV}+\hat{SVT}=90^0\)
mà \(\hat{SVT}=\hat{SHB}\)
và \(\hat{SHB}+\hat{SBM}=90^0\) (ΔSHB vuông tại S)
nên \(\hat{MSB}=\hat{MBS}\)
=>MB=MS
Ta có: \(\hat{MSH}+\hat{MSB}=\hat{HSB}=90^0\)
\(\hat{MHS}+\hat{MBS}=90^0\) (ΔBSH vuông tại S)
mà \(\hat{MSB}=\hat{MBS}\)
nên \(\hat{MSH}=\hat{MHS}\)
=>MS=MH
mà MB=MS
nên MH=MB
=>M là trung điểm của BH
MS=MH nên ΔMSH cân tại M
=>\(\hat{MSH}=\hat{MHS}=\hat{BHS}\)
=>\(x=\hat{BHS}\)
Xét ΔBSH vuông tại S có \(cosH=\frac{SH}{HB}\)
Xét ΔSCH vuông tại C có \(cosH=\frac{CH}{HS}\)
Xét ΔHTC vuông tại T có \(cosH=\frac{HT}{HC}\)
Do đó: \(cosH\cdot cosH\cdot cosH=\frac{SH}{HB}\cdot\frac{HC}{HS}\cdot\frac{HT}{HC}=\frac{HT}{HB}\)
=>\(\frac{HT}{HB}=cos^3x\)
=>\(HT=HB\cdot cos^3x\)