Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn tự vẽ hình nha
a) Xét tam giác OHM và tam giác OHN có:
ON=OM (vì tam giác OMN là tam giác cân )
OH chung
góc N= góc M (vì tam giác cân có 2 góc đáy bằng nhau)
suy ra tam giác OHN=tam giác OHM (c.g.c)
b) vì tam giác OMN là tam giác cân
mà OH là đường cao đông thời là đường phân giác
suy ra :OH là phân giác của góc MON

1: Xét ΔOMB và ΔONA có
OM=ON
\(\widehat{BOM}\) chung
OB=OA
Do đó: ΔOMB=ΔONA
Suy ra: \(\widehat{OMB}=\widehat{ONA}\)
mà \(\widehat{OMB}+\widehat{AMI}=180^0\)
và \(\widehat{ONA}+\widehat{BNI}=180^0\)
nên \(\widehat{AMI}=\widehat{BNI}\)
2: Ta có: OM+MA=OA
ON+NB=OB
mà OM=ON
và OA=OB
nên MA=NB
Xét ΔIAM và ΔIBM có
\(\widehat{IAN}=\widehat{IBN}\)(ΔONA=ΔOMB
MA=NB
\(\widehat{AMI}=\widehat{BNI}\)
Do đó: ΔIAM=ΔIBN

a) ta có OM = ON (gt)
=> OMN cân tại O
b) vì OMN cân tại O mà góc MON = 60 độ
-> góc OMN=góc ONM = (180 - 60 ) : 2 = 60 độ
=> tan giác OMN đều
xét Tam giác OHM và tam giác OHN
có OM = ON (gt)
góc ONH = góc OMH (OMN là tam giác cân)
góc ONH = góc OMH (H là đường cao )
=> tam giác OHM = tam giác OHN ( g-c-g)
=> HM = HN ( 2 cạnh tương ứng )

a) xét tg OAH & tg OBH có :
OH chung
OA = OB ( gt )
góc AOH = góc BOH ( Ot p/g góc xOy )
suy ra tg OAH = tg OBH (c. g .c )
b) do tgOAH = tg OBH ( cmt )
suy ra góc OAH= góc OBH ( 2góc tg ứng )
Xét tg ONB & tg OAM có :
góc OAH= góc OBH ( cmt )
OA = OB ( gt )
góc O chung
suy ra tg ONB = tg OAM ( g . c .g )
c) có : OA = OB suy ra O thuộc trung trực AB (1)
tg tự có AH =BH ( 2 c tg ứng của tg OAH = tg OBH )
suy ra H thuộc trung trực OH (2)
từ (1) & (2) suy ra OH trung trực của AB
suy ra OH vuông góc AB
d) bn tự cm theo cách trên ( cm H thuộc trung trưc MN )

A t O m n B C M D
a) Tam giác vuông BOA và tam giác vuông COA có:
góc BOA = góc COA (phân giác) (1)
OA chung (2)
Từ (1) và (2) => Tam giác BOA = Tam giác COA (cạnh huyền - góc nhọn) (đpcm). => OB = OC & AB =AC
b) Ta có: OB = OC => O thuộc trung trực BC (định lý đảo) (5)
AB = AC => O thuộc trung trực BC (định lý đảo) (6)
Từ (5) và (6) => OA là trung trực của BC (đpcm). => Ot vuông góc BC (7)
c) (Hình như BD vuông góc OC tại D, ở đây mình xét trường hợp đấy)
vuông BOA và \(\Delta\)vuông COA
BD vuông góc OC tại C (8)
Từ (7) và (8) => M là trực tâm của tam giác OBC => CM là đường cao của OBC => CM vuông góc BC (đpcm).
O n m B A C M D t
a) Xét tam giác ABO và tam giác ACO có:
Góc ACO = góc ABO = 90o
AO cạnh chung
Góc AOB = góc AOC (vì OA là tia phân giác của góc mOn)
=> Tam giác ABO = tam giác ACO (cạnh huyền - góc nhọn)
b) Ta có: Tam giác ABO = tam giác ACO (cmt)
=> BO = CO (2 cạnh tương ứng)
=> Tam giác BCO cân tại O
Mà OA là đường phân giác của tam giác BCO cân tại O
=> OA là đường trung trực của BC (đpcm)
c) Xét tam giác BCO có: 2 đường cao BD và OA cắt nhau tại M
=> CM cũng là đường cao => CM vuông góc BC (đpcm)

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)