\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

1)

a) trong tam giac ABC vuong tai A co 

+)BC2=AB2+AC2

suy ra AC=12cm

+)AH.BC=AB.AC

suy ra AH=7,2cm

b) Trong tu giac AMHN co HMA=HNA=BAC=90 do suy ra AMHN la hcn suy ra AH=MN=7,2cm

suy ra MN=7,2cm

c) goi O la giao diem cu MN va AH 

Vi AMHN la hcn (cmt) nen OA=OH=7,2/2=3,6cm

suy ra SBMCN=1/2[OH*(MN+BC)]=39,96cm2
d) Vi AMHN la hcn nen goc AMN=goc HAB 

Trong tam giac ABC vuong tai A co AK la dg trung tuyen ung voi canh huyen BC nen AK=BK=KC

suy ra tam giac AKB can tai K

suy ra goc B= goc BAK

Ta co goc B+ goc BAH=90 do 
tuong duong BAK+AMN=90 do suy ra AK vuong goc voi MN (dmcm)

2 tháng 8 2018

bai 2 sai de ban oi sinx hay cosx chu ko phai sin hay cos

18 tháng 6 2017

1 ,áp dụng bộ 3 pitago trong tam giác abc  suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c  

S tứ giác = SABC  +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.

2,bài 2 vẽ hình lâu lém tự làm nha bn 

3,

18 tháng 6 2017

B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

23 tháng 3

Để giải bài toán này, ta sẽ thực hiện theo từng phần như sau:

a. Tính AH
Trong tam giác vuông ABC, ta có:

  • BH = 4 cm
  • CH = 9 cm Áp dụng định lý Pytago-rơ: \(A B^{2} = B H^{2} + C H^{2}\) \(A B^{2} = 4^{2} + 9^{2} = 16 + 81 = 97\) \(A B = \sqrt{97} \approx 9.85 \&\text{nbsp};\text{cm}\) Vì tam giác ABC vuông tại A, nên AH là đường cao của tam giác. Áp dụng định lý Pytago-rơ: \(A H^{2} + H B^{2} = A B^{2}\) \(A H^{2} + 4^{2} = 97\) \(A H^{2} = 97 - 16 = 81\) \(A H = \sqrt{81} = 9 \&\text{nbsp};\text{cm}\)

b. Chứng minh tam giác ADE đồng dạng với tam giác ACB
Để chứng minh hai tam giác đồng dạng, ta cần chứng minh có ít nhất hai cặp cạnh tỷ lệ với nhau.
Xét tam giác ADE và tam giác ACB:

  • Tam giác ADE và tam giác ACB đều là tam giác vuông.
  • Góc A chung cho cả hai tam giác.
  • Tỷ lệ AE/AC = AD/AB (vì AH là đường cao). Vậy hai tam giác ADE và ACB đồng dạng.

c. Kẻ đường thẳng vuông góc với DE tại E, cắt HC tại M. Tính sin DME
Theo định lý Pytago-rơ, ta có:
\(D M^{2} + M E^{2} = D E^{2}\)
Vì DE vuông góc với EM, nên:
\(s i n D M E = \frac{D M}{D E}\)

5 tháng 7 2017

Ôn tập Hệ thức lượng trong tam giác vuông

a/

Áp dụng định lí Pitago vào ∆ABC vuông tại A ta được

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow\)B^\(\approx53^0\)

C^\(=90^0-53^0\approx37^0\)

b/

Vì AD là tia phân giác A^ nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(DB=BC-DC=10-DC\)

Suy ra \(\dfrac{10-DC}{DC}=\dfrac{4}{6}\Rightarrow60-6.DC=4.DC\)

\(\Leftrightarrow10.DC=60\Leftrightarrow DC=6\left(cm\right)\)

Suy ra \(DB=10-6=4\left(cm\right)\)

6 tháng 10 2017

\(\dfrac{4}{6}\dfrac{ }{ }\) lấy ở đâu thế

Vẽ đường kính CM

\(MA\perp AC\)(\(\Delta MAC\)nội tiếp)

\(BE\perp AC\)(giả thiết)

\(\Rightarrow\)\(MA//BH\) (1)

\(MB\perp BC\)(\(\Delta MBC\)nội tiếp)

\(AH\perp BC\)(giả thiết)

\(\Rightarrow\)\(MB//AH\)(2)

Từ (1)(2):

\(\Rightarrow\)\(MAHB\)là hình bình hành.

\(\Rightarrow\)\(AH=BM\)

Do\(\widehat{BAC}=60^0\)

\(\Rightarrow BC=R\sqrt{3}\)

Áp dụng địn lí Pytago vào \(\Delta BMC\)

\(BM^2+BC^2=MC^2\)

\(\Leftrightarrow\)\(BM^2=4R^2-3R^2\)

\(\Leftrightarrow\)\(BM^2=R^2\)

\(\Leftrightarrow\)\(BM=\sqrt{R^2}=R\)

\(\Rightarrow\)\(AH=BM=R\)

Mà \(AO=\frac{2R}{2}=R\)

\(\Rightarrow\)\(AH=AO\)

\(\Rightarrow\)\(\Delta AHO\)cân tại \(A\)(ĐPCM)