Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a,
xét tg bea và tg bem có
be chung
góc b1= góc b2[gt]
ba=bm[gt]
suy ra tg bea = tg bem[c.g.c]
b,
vì tg bea = tg bem[cmt]
suy ra góc a = góc m[tương ứng]
mà a = 90 độ
suy ra góc m = 90 độ
suy ra em vg góc bc
c,
tớ đoán là bằng nhau nhưng chưa biết cách tính
a) Xét tam giác BEA và tam giác BEM ta có:
BA=BM (gt)
góc ABE=góc MBE (gt)
BE là cạnh chung
=> tam giác BEA=tam giác BEM ( c-g-c)
b) Vì tam giác BEA= tam giác BEM
=> góc BME= góc BAE (góc tương ứng)
=>góc BME= 90* (góc BAE=90*)
=>EM vuông góc BC
c) ta có :
góc BME+góc EMC= 180*(kề bù)
=>90*+EMC=180*
=>EMC=90*
Mặt khác:
ABC=90*-C
Ta Có
EMC+MCE+MEC=180*
=> 90*+MCE+MEC=180*
=>C+MEC=90*
=>MEC=90*-C
=>ABC=MEC=90*-C
Vậy ABC=MEC
![](https://rs.olm.vn/images/avt/0.png?1311)
tự vẽ hình
a) xét tam giác ABD và tam giác AED có:
AB=AE (gt)
góc A1 = góc A2 ( AD là p/giác của góc A)
AD chung
=> tam giác ABD = tam giác AED
câu d) mới hok hồi sáng giờ mk chưa bít vận dụng hết hì để xem lại bài đã mk giải cho
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)