K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AKCH có : 

AD = DC ( D là trung điểm AC )

HD = DK ( K là điểm đối xứng của H qua D )

=> AKCH là hình bình hành (1)

Xét ∆ vuông AHC có : 

HD là trung truyến 

=> HD = AD = DC 

Mà HD + DK = HK 

AD + DC = AC 

=> HK = AC (2)

Từ (1) và (2) => AKCH là hình chữ nhật 

b) Xét ∆ABC có : 

E là trung điểm AB 

D là trung điểm BC 

=> ED là đường trung bình ∆ABC 

=> ED //BC

Xét ∆ABC có : 

E là trung điểm AC

I là trung điểm BC

=> EI là đường trung bình ∆ABC 

=> EI//AC , EI = \(\frac{1}{2}AC\)

Xét tứ giác EDCI có :

ED// IC ( I \(\in\)BC )

EI//DC ( D \(\in\)AC)

=> EDCI là hình bình hành 

c) Vì ED //HI ( H , I \(\in\)BC )

=> EDIH là hình thang

Vì EI = \(\frac{1}{2}AC\)(cmt)

Mà HD = AD = DC (cmt)

=> HD = \(\frac{1}{2}AC\) 

=> EI = HD 

Mà EDIH là hình thang 

=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )

10 tháng 5 2020

Phần d có ai làm được không ạ?

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K

17 tháng 3

hướng dẫn ý c: Chứng minh tam giác AHC đồng dạng tam giác MBE (gg) suy ra AC/ME=CH/BE mà BE=BC/2; AC=2.DE (DE là đường trung bình tam giác ABC)

suy ra 2.DE/ME= CH/(BC/2) suy ra DE/ME=CH/BC

lại có NH//MB suy ra CH/BC=CN/CM (thales)

suy ra DE/ME=CN/CM suy ra DN//CE (thales đảo) suy ra DN//HB ; D là trung điểm AB suy ra N là trung điểm AH

22 tháng 12 2021

a: Xét tứ giác AIHN có 

\(\widehat{AIH}=\widehat{ANH}=\widehat{NAI}=90^0\)

Do đó: AIHN là hình chữ nhật

Suy ra: AH=IN