Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét (O) có
ΔAEC nội tiếp đường tròn(A,E,C cùng thuộc (O))
AC là đường kính của (O)(gt)
Do đó: ΔAEC vuông tại E(Định lí)
\(\Rightarrow\)AE\(\perp\)EC tại E
\(\Rightarrow\)AE\(\perp\)BE tại E
hay \(\widehat{AEB}=90^0\)
Xét ΔAEB có \(\widehat{AEB}=90^0\)(cmt)
nên ΔAEB vuông tại E(Định nghĩa tam giác vuông)
Xét ΔAEB vuông tại E có \(\widehat{ABE}=45^0\)(gt)
nên ΔAEB vuông cân tại E(Định lí tam giác vuông cân)
\(\Rightarrow\)AE=EB(hai cạnh bên của ΔAEB vuông cân tại E)
b)
Ta có: EA\(\perp\)EB(cmt)
nên \(EA\perp EH\) tại E
Xét ΔEHB có \(EA\perp EH\) tại E(cmt)
nên ΔEHB vuông tại E(Định nghĩa tam giác vuông)
Ta có: ΔEHB vuông tại E(cmt)
mà EI là đường trung tuyến ứng với cạnh huyền BH(I là trung điểm của BH)
nên \(EI=\dfrac{BH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(IH=BI=\dfrac{BH}{2}\)(I là trung điểm của BH)
nên EI=IH=IB
Ta có: IH=IE(cmt)
nên I nằm trên đường trung trực của HE(Tính chất đường trung trực của một đoạn thẳng)
hay đường trung trực của HE đi qua trung điểm I của BH(đpcm)
c) Ta có: \(AE\perp EC\) tại E(cmt)
nên \(AE\perp BC\) tại E
Xét (O) có
ΔADC nội tiếp đường tròn(A,D,C cùng thuộc đường tròn(O))
AC là đường kính của (O)(gt)
Do đó: ΔADC vuông tại D(Định lí)
\(\Rightarrow CD\perp AD\) tại D
hay \(CD\perp BA\) tại D
Xét ΔBAC có
AE là đường cao ứng với cạnh BC(cmt)
CD là đường cao ứng với cạnh BA(cmt)
AE cắt CD tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
\(\Rightarrow\)BH là đường cao ứng với cạnh AC
hay \(BH\perp AC\)(đpcm)
bạn ơi phần "Do đó: ΔAEC vuông tại E(Định lí)" ở câu a là định lí nào vậy?
![](https://rs.olm.vn/images/avt/0.png?1311)
c, Gọi K là giao điểm của DG và IF
Vì D là giao điểm của 2 tiếp tuyến
-=>\(AC\perp OD\)
=>ADO=CAB=FAE
=> tam giác ADO đồng dạng tam giác EAF
=> \(\frac{AD}{EA}=\frac{AO}{EF}\)
=> \(\frac{AD}{2IE}=\frac{\frac{1}{2}AB}{EF}\)=> \(\frac{AD}{IE}=\frac{AB}{EF}\)
=> Tam giác ADB đồng dạng tam giác EIF( 2 cạnh góc vuông )
=> ABD=IFE
=> tứ giác KBEF nội tiếp
=> FBK=90độ
=> \(GK\perp IF\)
Lại có \(IE\perp FG\),IE giao GK tại B
=> B là trực tâm của tam giác IFG
MÀ B cố định
=> ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=90^0\)(AB , AC tiếp tuyến)
=>\(\widehat{ABO}+\widehat{ACO}=180^0\)
=> tứ giác ABOC nội tiếp
=> \(\widehat{BOA}=\widehat{ACB}\)( chắn \(\widebat{BA}\))
b) ta có \(\hept{\begin{cases}AB=AC\left(cmt\right)\\OB=OC=R\end{cases}}\)
=> AO là đường trung trực của BC
=> \(AH\perp BC,HB=HC\)
=> \(\Delta IHB=\Delta IHC\left(c.g.c\right)\)
=>\(\widehat{HBI}=\widehat{ICH}=>\widebat{CI}=\widebat{BI}\)
\(=>\widehat{IBA}=\widehat{IBH}\)( chắn CI , BI )
=> IB là tia phân giác của góc ABC
c)xét tam giác OCA có \(CH\perp CA=>OC^2=OH.OA\)
mà \(OC=OD=>OC^2=OD^2\)
=>\(OD^2=OH.OA\)
mình làm lại nha
câu c, d nè :
c) áp dụng hệ thức lượng trong tam giác zuông ABO ta có
\(OH.OA=OB^2=OD^2=>OH.OA=OD^2\Leftrightarrow\)\(\frac{OH}{OD}=\frac{OD}{OA}=>\Delta OHD=\Delta ODA=>\widehat{OAD}=\widehat{ODH}\)
gọi J là là tâm đường tròn ngoại tiếp tam giác AHD
khi đó \(\widehat{OAD}=\frac{1}{2}\widehat{DJH}\)
zậy
\(\widehat{JDO}=\widehat{ODH}+\widehat{JDH}=\frac{1}{2}\widehat{DJH}+\widehat{JDH}=\frac{1}{2}\left(\widehat{DJH}+2\widehat{JDH}\right)=\frac{1}{2}.180^0=90^0\)
=> OD là ....
d) CHỉ ra M, N thuộc trung trực AH
theo cm ở cau C thì \(OD\perp JD\)nên J thuộc tiếp tuyến tại D của (O)
Mặt khác J là tâm đường tròn ngoại tiếp tam giác AHD nên J thuộc trung trực của AC
zậy J là giao điểm của tiếp tuyến tại D của (O) zà đường trung trực AD
=> J trùng E
zậy E là tâm đường tròn ngoại tiếp tam giác AHD nên E thuộc trung trực của AH
mặt khác M , N đều thuộc trung trực của AH nên M ,E ,N thẳng hàng