Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔHNM vuông tại H và ΔMND vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMND
b: ND=căn 3^2+4^2=5cm
MH=3*4/5=2,4cm
NH=3^2/5=1,8cm
c: ME là phân giác
=>NE/DE=MN/MD=3/4
=>NE/3=DE/4
=>S MNE=3/4*S MDE
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác NMP và tam giác MHP
có \(\widehat{NMP}=\widehat{MHP}\)(=90 độ )
\(\widehat{NPM}\) chung
Vậy tam giác NMP đồng dạng với tam giác MHP (g.g)
b) từ hai tam giác đồng dạng ở câu a suy ra \(\frac{NM}{MH}=\frac{NP}{MP}\)(1)
MH =\(\frac{MP\times MN}{NP}\)
tự tính nha bạn
c) Ta có tam giác NMP đồng dạng với tam giác NHM (g.g)
vì có \(\widehat{N}\) chung và \(\widehat{MHN}=\widehat{NMP}\)
suy ra \(\frac{MN}{MP}=\frac{NH}{HM}\)(2)
Từ (1) và (2) suy ra \(\frac{NH}{HM}=\frac{MH}{HP}\) rồi suy ra được điều phải chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
M N P H
a)xét \(\Delta HMN\) và \(\Delta MNP \)
\(\widehat{A}=\widehat{H}=90^o\left(gt\right)\)
\(\widehat{M}\) ( góc Chung)\)
\(\Rightarrow\Delta HMN\sim\Delta MNP\left(g-g\right)\)
\(\)
b) Theo ddịnh lí Py-ta-go, ta có:
\(NP^2=MN^2+MP^2\\ \Leftrightarrow NP^2=3^2+4^2\\ \Leftrightarrow NP^2=25\\ \Rightarrow NP=5\left(cm\right)\)
\(\dfrac{HM}{MN}=\dfrac{MP}{NP}\\ \Leftrightarrow\dfrac{HM}{3}=\dfrac{4}{5}\\ \Rightarrow HM=\dfrac{3\cdot4}{5}=2.4\left(cm\right)\)
) Theo ddịnh lí Py-ta-go, ta có:
\(MN^2=MH^2+NH^2\Rightarrow NH^2=MN^2-MH^2\\ NH^2=3^2-2.4^2=3.24\left(cm\right)\)
Cái này sử dụng phần a là g-g
phần b cmtt như phần a thì được \(\Delta MNP\omega\Delta HNM\)\(\Rightarrow\frac{MN}{NH}=\frac{NP}{MN}\)=>ĐPCM
phần c TỰ LÀM
phần d BÌNH PHƯƠNG TỈ SỐ ĐỒNG DẠNG