Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì tam giác MNP vuông tại M, nên MN là đường cao của tam giác và MH là đường trung tuyến. Do đó, MH = MN/2. Với giá trị của MN đã biết, bạn có thể tính được MH.
b) Khi kẻ HD vuông góc với MN tại D và HE vuông góc với MP tại E, ta có MDHE là hình chữ nhật. Vì MH là đường trung tuyến của tam giác MNP, nên MH = DE theo tính chất của đường trung tuyến.
c) Để chứng minh NH = 14,4 và PH = 25,6, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
d) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
e) Để chứng minh , chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.
g) Để chứng minh O là trực tâm của tam giác MNQ, chúng ta cần biết thêm thông tin về tam giác MNP hoặc các giá trị khác liên quan. Xin lỗi vì không thể giúp bạn với câu hỏi này vì thiếu thông tin.

a: Xét ΔMAP vuông tại P có \(tanP=\dfrac{MA}{AP}=\dfrac{7}{4,5}=\dfrac{14}{9}\)
=>\(\widehat{P}\simeq57^0\)
b: Xét ΔMNP vuông tại M có MA là đường cao
nên \(MA^2=AN\cdot AP\)
=>\(AN\cdot4,5=7^2=49\)
=>\(AN=\dfrac{98}{9}\left(cm\right)\)
NP=NA+AP
\(=\dfrac{98}{9}+\dfrac{9}{2}=\dfrac{277}{18}\left(cm\right)\)
Xét ΔMNP vuông tại M có MA là đường cao
nên \(\left\{{}\begin{matrix}MN^2=NA\cdot NP\\MP^2=PA\cdot PN\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}MN=\sqrt{\dfrac{98}{9}\cdot\dfrac{277}{18}}=\dfrac{7\sqrt{277}}{9}\left(cm\right)\\MP=\sqrt{4,5\cdot\dfrac{277}{18}}=\dfrac{\sqrt{277}}{2}\left(cm\right)\end{matrix}\right.\)

a: ΔMDN vuông tại D
=>\(MD^2+DN^2=MN^2\)
=>\(MN^2=6^2+8^2=36+64=100=10^2\)
=>MN=10(cm)
Xét ΔDNM vuông tại D có \(\sin DMN=\frac{DN}{MN}=\frac{6}{10}=\frac35\)
nên \(\hat{DMN}\) ≃36 độ 52p
b: Xét ΔMDN vuông tại D có DA là đường cao
nên \(MA\cdot MN=MD^2\left(1\right)\)
Xét ΔMDP vuông tại D có DB là đường cao
nên \(MB\cdot MP=MD^2\left(2\right)\)
Từ (1),(2) suy ra \(MA\cdot MN=MB\cdot MP\)
c: Xét ΔMIN vuông tại I và ΔMKP vuông tại K có
\(\hat{IMN}\) chung
Do đó: ΔMIN~ΔMKP
=>\(\frac{MI}{MK}=\frac{MN}{MP}\)
=>\(\frac{MI}{MN}=\frac{MK}{MP}\)
Xét ΔMIK và ΔMNP có
\(\frac{MI}{MN}=\frac{MK}{MP}\)
góc IMK chung
Do đó: ΔMIK~ΔMNP
=>\(\hat{MIK}=\hat{MNP}\left(3\right)\)
ta có: \(MA\cdot MN=MB\cdot MP\)
=>\(\frac{MA}{MP}=\frac{MB}{MN}\)
Xét ΔMAB và ΔMPN có
\(\frac{MA}{MP}=\frac{MB}{MN}\)
góc AMB chung
Do đó: ΔMAB~ΔMPN
=>\(\hat{MBA}=\hat{MNP}\left(4\right)\)
Từ (3),(4) suy ra \(\hat{MBA}=\hat{MIK}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên BA//KI