Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình tự kẻ
tứ giác ADBH có:
D vuông (gt)
Góc HAD vuông ( AH vuông DE )
Góc HBD vuông ( BH vuông DF )
=> tứ giác ADBH là HCN
=> AB=DH; I là trung điểm của AB và DH ( tính chất hcn )
Ta có:
AB=DH (cmt)
I là trung điểm của AB và DH (cmt)
=> IH = IB
Tam giác HIB có:
IH = IB (cmt)
=> tam giác HIB cân tại I
=> góc IHB = góc IBH (2 góc đáy trong tam giác cân )

a: ΔDEF vuông tại D
=>\(DE^2+DF^2+EF^2\)
=>\(EF^2=9^2+12^2=225\)
=>\(EF=\sqrt{225}=15\left(cm\right)\)
Ta có; ΔDEF vuông tại D
mà DM là đường trung tuyến
nên \(DM=\dfrac{EF}{2}=7,5\left(cm\right)\)
b: Xét tứ giác DNMK có
\(\widehat{DNM}=\widehat{DKM}=\widehat{KDN}=90^0\)
=>DNMK là hình chữ nhật
c: Xét ΔDEF có MN//DF
nên \(\dfrac{MN}{DF}=\dfrac{EM}{EF}\)
=>\(\dfrac{MN}{DF}=\dfrac{1}{2}\)
mà \(MN=\dfrac{1}{2}MH\)
nên MH=DF
Ta có: MN//DF
N\(\in\)MH
Do đó: MH//DF
Xét tứ giác DHMF có
MH//DF
MH=DF
Do đó: DHMF là hình bình hành
=>DM cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của DM
nên O là trung điểm của HF
=>H,O,F thẳng hàng

Tình hình kinh doanh khác thì cũncũng khôngkhông khí ckhí thếthế nhỉ mình cũng không phải ai muốn làm gì có ai biết mấy bạn cứ nói thẳng ra luôn rồi đó bác ah bác nào dùng rồi cho vào túi nôn thì nó vẫn còn nhiều người dùng có sẽ không còncòn được nó đâu phải chỉ là những thứ khác thì không thể nào có thể

a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK

a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)
b: Xét tứ giác DMHN có
góc DMH=góc DNH=góc MDN=90 độ
nên DMHN là hình chữ nhật
c: Xét tứ giác DHMK có
DK//MH
DK=MH
Do đó: DHMK là hình bình hành
\(\text{Xét tam giác EHD vuông tại H có đường trung tuyến HM ứng với cạnh huyền ED}\)
\(\Rightarrow MH=MD=ME=\dfrac{1}{2}ED\)
\(\Rightarrow\)Tam giác HMD cân tại M
\(\Rightarrow\)\(\widehat{MHD}=\widehat{MDH}\)
Tương tự với tam giác DHF vuông tại H ta được \(\widehat{DHN}=\widehat{HDN}\)
Ta có \(\widehat{MHN}=\widehat{MHD}+\widehat{NHD}=\widehat{MDH}+\widehat{NDH}=\widehat{MDN}\)
Suy ra góc MHN có số đo 90 độ
Tick nha bạn 😘
Ta có: ΔDHE vuông tại H(Gt)
mà HM là đường trung tuyến ứng với cạnh huyền DE(Gt)
nên HM=DM=ME
Ta có: ΔDHF vuông tại H(gt)
mà HN là đường trung tuyến ứng với cạnh huyền DF(Gt)
nên HN=DN=FN
Xét ΔNDM và ΔNHM có
ND=NH(cmt)
NM chung
MD=MH(cmt)
Do đó: ΔNDM=ΔNHM(c-c-c)
Suy ra: \(\widehat{NDM}=\widehat{NHM}\)
hay \(\widehat{NHM}=90^0\)