\(\widehat{A}=100^0\) . Trên cạnh BC lấy các điểm D và E sao cho...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Vì tam giác ABC cân tại A => góc B = góc C

Xét tam giác ABC cân tại A: góc A + góc B + góc C = 180o ( đinh lý tổng ba góc trong một tam giác )

Thay : 100o + 2góc B = 180 độ

2gócB = 180 độ - 100 độ

2góc B = 80 độ

=> góc B = góc C = 40 độ

Vì CA = CE => tam giác CAE cân tại C

Xét tam giác ACE cân tại C , có :

góc C + góc CAE + góc AEC = 180 độ

Thay : 40 độ + 2góc AEC + 180 độ

2góc AEC = 180 độ - 40 độ

2góc AEC = 140 độ

=> góc AEC = gócCAE = 70 độ

Vì BA = BD => tam giác BAD cân tại B

Xét tam giác BAD cân tại B , có :

góc B + góc BAD + góc BDA = 180 độ

Thay : 40 độ + 2gócBAD =180 độ

2 góc BAD = 180 độ - 40 độ

2 góc BAD = 140 độ

=> góc BAD = góc BDA = 70 độ

Xét tam giác AED : góc DAE + góc AED + góc ADE = 180 độ

Thay : góc DAE + 70 độ + 70 độ = 180 độ

góc DAE = 180 độ - 70 độ - 70 độ

góc DAE = 40 độ

Vậy góc DAE = 40o A B C E D

19 tháng 5 2017

Ta có: \(\Delta\)ABC cân tại A

\(\widehat{A}\) = 100o

=> \(\widehat{B}\) = \(\widehat{C}\) = 20o (Vì tổng các góc trong 1 \(\Delta\) luôn bằng 180o)

* Vì: BA = BD (gt)

=> \(\Delta\)BAD cân tại B.

Ta có: \(\widehat{BAD}+\widehat{B}+B\widehat{DA}=180^O\)

\(\widehat{BAD}+40^{O^{ }}+\widehat{BD}A=180^O\)

\(B\widehat{AD}+\widehat{BDA}=180^{O^{ }}-40^O=120^O\)

\(\Delta\)ABD cân

=> \(\widehat{A}\)= \(\widehat{BDA}\) = 70o

* Vì AC = CE (gt)

=> \(\Delta\)ACE cân tại C.

Ta có: \(\widehat{EAC}+\widehat{C}+\widehat{CEA}=180^O\)

\(\widehat{EAC}+40^O+\widehat{CEA}=180^O\)

\(\widehat{EAC}+\widehat{CEA}=180^O-40^O=140^O\)

\(\Delta\)ACE cân

=> \(\widehat{EAC}=\widehat{CEA}=70^O\)

* Xét \(\Delta\)AED có: \(\widehat{AED}=\widehat{ADE}=70^O\)

Áp dụng định lý tổng các góc trong 1 \(\Delta\) bằng 180o, ta có:

\(\widehat{DAE}+\widehat{ADE}+\widehat{DEA}=180^O\)

\(\widehat{DAE}+70^O+70^O=180^O\)

\(\widehat{DAE}=180^O-70^{O^{ }}-70^O\)

\(\widehat{DAE}=40^O\)

2 tháng 1 2018

mk tg \(\widehat{B}=\widehat{C}=40\) độ tại 180-100=80 và 80:2=40 ms phải Evil Yasuda

26 tháng 12 2018

ΔABD cân tại B có \widehat{B} = 50º nên \widehat{D1} = 70º 

ΔACE cân tại C có \widehat{C} = 50º nên \widehat{E1} = 70º 

27 tháng 1 2018

Ta có: ΔABC cân tại A.

Nên ∠B=C=\(\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)

Ta có: BA=BD(gt)

nên ΔABD cân tại B.

Do đó: ∠ADB=∠DAB=\(\dfrac{180^0-\widehat{B}}{2}=\dfrac{180^0-40^0}{2}=70^0\)

Chứng minh tương tự, ta được: ∠AEC=∠EAC=\(\dfrac{180^0-\widehat{B}}{2}=\dfrac{180^0-40^0}{2}=70^0\)

Ta có: ∠AEC=∠ADB (hoặc ∠AED=∠ADE) (cùng bằng 700)

Do đó: ΔAED cân tại A.

Suy ra: ∠DAE=1800-2∠AED=1800-2.700=400

BTVN đây , nhờ mọi người giải giùm:1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:a,\(\Delta\)ABD = \(\Delta\)ACEb, \(\Delta AED\)cânc, AH là đường trung trực của ED.d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)= \(\widehat{DKC}\)2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy...
Đọc tiếp

BTVN đây , nhờ mọi người giải giùm:

1/.Cho tam giác ABC cân A, góc A nhỏ hơn 90' , Vẽ BD\(\perp\)AC; CE\(\perp\)AB , gọi H là giao điểmcủa BD và CE.CMR:

a,\(\Delta\)ABD = \(\Delta\)ACE

b, \(\Delta AED\)cân

c, AH là đường trung trực của ED.

d, Trên tia đối của tia DB lấy điểm K sao cho DK = DB. C/m :\(\widehat{ECB}\)\(\widehat{DKC}\)

2/.Cho tam giác ABC cân A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ DH, EK \(\perp\)BC. CMR: a, HB=CK

b, \(\widehat{AHB}\)\(\widehat{AKC}\)

c,HK // DE

d. \(\Delta AHE\)\(\Delta AKD\)

3/ Cho \(\widehat{xOy}\)và tia phân giác Ot. Trên tia Ot lấy điểm M, trên các tia Õ và Oy lần lượt lấy các điểm A và B sao cho OA=OB. Gọi H là giao điểm của Ab và Ot.CMR:

a, MA = Mb

b, OM là trung trực của AB

c, Cho AB = 6cm, OA=5cm. Tính OH

( Ko gấp lắm nên từ từ giải rõ ràng, đúng kết quả nhé)

 

3
11 tháng 2 2018

1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC

A B C D E H K

a) Xét tam giác ABD và tam giác ACE có:

\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)

b) AE=AD(vì tam giác ABD=tam giác ACE 

=> tam giác AED cân tại A 

c) Xem lại đề

d) Xét tam giác BCK có:

\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)

=> CD là đường trung trực của BK

=> BC=CK

=> tam giác BCK cân tại C

=>\(\widehat{CBK}=\widehat{CKB}\)

Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)

=> góc ECB= góc CKB 

11 tháng 2 2018

3) Đề là: 

Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH: 
a/ MA = MB 
b/ OM là đường trung trực của AB 
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ?  (bn viết khó hiểu qá nên mk xem lại trong vở)

Tự vẽ hình!

a/ Xét tam giác OAM và tam giác OBM, có:

Cạnh OM là cạnh chung

OA = OB (gt)

góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)

=> Tam giác OAM = tam giác OBM (c.g.c)

=> MA = MB ( 2 cạnh tương ứng)

b/ Ta có: MA = MB (cmt)

=> Tam giác AMB là tam giác cân

=> Góc MAH = góc MBH

Xét tam giác AMH và tam giác BMH, có:

góc MAH = góc MBH ( cmt)

MA = MB ( cmt)

góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)

=> tam giác AMH và tam giác BMH ( g.c.g)

=> AH = HB ( 2 cạnh tương ứng)

=> H là trung điểm của AB (1)

Vì tam giác AMH = tam giác BMH (cmt)

=>góc MHA = góc MHB ( 2 góc tương ứng)

mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)

=> góc MHA = góc MHB= 180 độ : 2 = 90 độ

=> MH vuông góc với AB (2)

Từ (1) và (2)

=> MH là đường trung trực của AB

=> OM là đường trung trực của AB ( vì H thuộc OM )

c/ Vì H là trung điểm của AB (cmt)

=> AH =HB = AB : 2 = 6 :2 = 3 (cm)

Xét tam giác OAH vuông tại H  có: OA2 = OH2 + AH2 ( định lí Py-ta-go)

=> 52 = OH2 + 32 

=> 25 = OH2 + 9

=> OH2 = 25 - 9

=> OH2 = 16

\(\Rightarrow OH=\sqrt{16}\)

\(\Rightarrow OH=4cm\)