Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\Delta\)ABC cân tại A
\(\widehat{A}\) = 100o
=> \(\widehat{B}\) = \(\widehat{C}\) = 20o (Vì tổng các góc trong 1 \(\Delta\) luôn bằng 180o)
* Vì: BA = BD (gt)
=> \(\Delta\)BAD cân tại B.
Ta có: \(\widehat{BAD}+\widehat{B}+B\widehat{DA}=180^O\)
\(\widehat{BAD}+40^{O^{ }}+\widehat{BD}A=180^O\)
\(B\widehat{AD}+\widehat{BDA}=180^{O^{ }}-40^O=120^O\)
Mà \(\Delta\)ABD cân
=> \(\widehat{A}\)= \(\widehat{BDA}\) = 70o
* Vì AC = CE (gt)
=> \(\Delta\)ACE cân tại C.
Ta có: \(\widehat{EAC}+\widehat{C}+\widehat{CEA}=180^O\)
\(\widehat{EAC}+40^O+\widehat{CEA}=180^O\)
\(\widehat{EAC}+\widehat{CEA}=180^O-40^O=140^O\)
Mà \(\Delta\)ACE cân
=> \(\widehat{EAC}=\widehat{CEA}=70^O\)
* Xét \(\Delta\)AED có: \(\widehat{AED}=\widehat{ADE}=70^O\)
Áp dụng định lý tổng các góc trong 1 \(\Delta\) bằng 180o, ta có:
\(\widehat{DAE}+\widehat{ADE}+\widehat{DEA}=180^O\)
\(\widehat{DAE}+70^O+70^O=180^O\)
\(\widehat{DAE}=180^O-70^{O^{ }}-70^O\)
\(\widehat{DAE}=40^O\)
mk tg \(\widehat{B}=\widehat{C}=40\) độ tại 180-100=80 và 80:2=40 ms phải Evil Yasuda

ΔABD cân tại B có = 50º nên
= 70º
ΔACE cân tại C có = 50º nên
= 70º

Ta có: ΔABC cân tại A.
Nên ∠B=C=\(\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-100^0}{2}=40^0\)
Ta có: BA=BD(gt)
nên ΔABD cân tại B.
Do đó: ∠ADB=∠DAB=\(\dfrac{180^0-\widehat{B}}{2}=\dfrac{180^0-40^0}{2}=70^0\)
Chứng minh tương tự, ta được: ∠AEC=∠EAC=\(\dfrac{180^0-\widehat{B}}{2}=\dfrac{180^0-40^0}{2}=70^0\)
Ta có: ∠AEC=∠ADB (hoặc ∠AED=∠ADE) (cùng bằng 700)
Do đó: ΔAED cân tại A.
Suy ra: ∠DAE=1800-2∠AED=1800-2.700=400

1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC
A B C D E H K
a) Xét tam giác ABD và tam giác ACE có:
\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)
b) AE=AD(vì tam giác ABD=tam giác ACE
=> tam giác AED cân tại A
c) Xem lại đề
d) Xét tam giác BCK có:
\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)
=> CD là đường trung trực của BK
=> BC=CK
=> tam giác BCK cân tại C
=>\(\widehat{CBK}=\widehat{CKB}\)
Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)
=> góc ECB= góc CKB
3) Đề là:
Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH:
a/ MA = MB
b/ OM là đường trung trực của AB
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ? (bn viết khó hiểu qá nên mk xem lại trong vở)
Tự vẽ hình!
a/ Xét tam giác OAM và tam giác OBM, có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
b/ Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
=> Góc MAH = góc MBH
Xét tam giác AMH và tam giác BMH, có:
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2)
=> MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
c/ Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H có: OA2 = OH2 + AH2 ( định lí Py-ta-go)
=> 52 = OH2 + 32
=> 25 = OH2 + 9
=> OH2 = 25 - 9
=> OH2 = 16
\(\Rightarrow OH=\sqrt{16}\)
\(\Rightarrow OH=4cm\)
Vì tam giác ABC cân tại A => góc B = góc C
Xét tam giác ABC cân tại A: góc A + góc B + góc C = 180o ( đinh lý tổng ba góc trong một tam giác )
Thay : 100o + 2góc B = 180 độ
2gócB = 180 độ - 100 độ
2góc B = 80 độ
=> góc B = góc C = 40 độ
Vì CA = CE => tam giác CAE cân tại C
Xét tam giác ACE cân tại C , có :
góc C + góc CAE + góc AEC = 180 độ
Thay : 40 độ + 2góc AEC + 180 độ
2góc AEC = 180 độ - 40 độ
2góc AEC = 140 độ
=> góc AEC = gócCAE = 70 độ
Vì BA = BD => tam giác BAD cân tại B
Xét tam giác BAD cân tại B , có :
góc B + góc BAD + góc BDA = 180 độ
Thay : 40 độ + 2gócBAD =180 độ
2 góc BAD = 180 độ - 40 độ
2 góc BAD = 140 độ
=> góc BAD = góc BDA = 70 độ
Xét tam giác AED : góc DAE + góc AED + góc ADE = 180 độ
Thay : góc DAE + 70 độ + 70 độ = 180 độ
góc DAE = 180 độ - 70 độ - 70 độ
góc DAE = 40 độ
Vậy góc DAE = 40o A B C E D