Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đang dùng điện thoại mà lười viết, bạn tham khảo tạm nha.
b/ Xét ∆ABC có
^A+^ABC+^ACB=180° (đ.l tổng 3 góc)
=> ^ABC + ^ACB = 120°
=> ^ABC/2 + ^ACB/2 = 60°
=> ^CBD + ^BCE = 60°
=> ^CBI + ^BCI = 60°
=> ^BIC = 180° - 60° = 120°
a, Kẻ IF là pg ^BIC. (F thuộc BC)
=> ^BIF = ^CIF = 60°
Mà ^EIB + ^BIC = 180°
=> ^EIB =60°
=> ^EIB = ^DIC = 60° (đối đỉnh)
=> ^EIB = ^BIF = ^FIC = ^DIC = 60°
Khi đó
∆EIB = ∆FIB (g.c.g) (bạn tự xét => BE = FB
∆FIC = ∆DIC (c.g.c) (tự xét) => FC = DC
Do đó
BE + CD = BF + CF = BC
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
![](https://rs.olm.vn/images/avt/0.png?1311)
gócDCB=gócEBC=góc1/2ACB=góc1/2ABC
a)xét tg DCB và tg EBC có
BC là cạnh chung
góc B=góc C
góc DCB=góc EBC
suy ra tg DCB = tg EBC(g.c.g)
suy ra CD=BE(hai cạnh tương ứng)
xét tgADC và tgAEB có
góc A là góc chung là góc vuông
AB=AC
DC=EB
suy ra tgADC = tgAEB (ch.cgv)
suy ra AD=AE(hai cạnh tương ứng)
câu b và câu c k xong đi rồi nói
![](https://rs.olm.vn/images/avt/0.png?1311)
A A C C B B E E D D I I M M G G J J H H K K
a) Do tam giác ABC vuông cân nên \(\widehat{ABC}=\widehat{ACB}\Rightarrow\widehat{ABE}=\widehat{ACD}\)
Xét tam giác vuông ABE và tam giác vuông ACD có:
AB = AC (gt)
\(\widehat{ABE}=\widehat{ACD}\)
\(\Rightarrow\Delta ABE=\Delta ACD\) (Cạnh góc vuông - góc nhọn kề)
\(\Rightarrow BE=CD;AE=AD\)
b) I là giao điểm của hai tia phân giác góc B và góc C của tam giác ABC nên AI cũng là phân giác góc A.
Do tam giác ABC cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.
Vậy thì \(\widehat{AMC}=90^o;BM=MC=AM\)
Từ đó suy ra tam giác AMC vuông cân tại M.
c) Gọi giao điểm của DH, AK với BE lần lượt là J và G.
Do DH và AK cùng vuông góc với BE nên ta có
\(\Delta BDJ=\Delta BHJ;\Delta BAG=\Delta BKG\Rightarrow BD=BH;BA=BK\)
\(\Rightarrow HK=AD\)
Mà AD = AE nên HK = AE. (1)
Do tam giác BAK cân tại B, có \(\widehat{B}=45^o\Rightarrow\widehat{BAK}=\frac{180^o-45^o}{2}=67,5^o\)
\(\Rightarrow\widehat{GAE}=90^o-67,5^o=22,5^o=\frac{\widehat{IAE}}{2}\)
Suy ra AG là phân giác góc IAE.
Từ đó ta có \(\widehat{KAC}=\widehat{ICA}\left(=22,5^o\right)\)
\(\Rightarrow\Delta AKC=\Delta CIA\left(g-c-g\right)\Rightarrow KC=IA\)
Lại có tam giác AIE có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE (2)
Từ (1) và (2) suy ra HK = KC.
A B C D E
Hình đây mọi người
cho mình xin cách giải cụ thể nha