Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)

a, xét tam giác ODA và tam giác ODB có : OD chung
^DOB = ^DOA do OD là pg của ^BOA (gt)
OA = OB (gt)
=> tam giác ODA = tam giác ODB (c-g-c)
b, t đoán đề là cm OD _|_ AB
tam giác ODA = tam giác ODB (câu a)
=> ^ODA = ^ODB (đn)
mà ^ODA + ^ODB = 180 (kb)
=> ^ODA = 90
=> OD _|_ AB
c, xét tam giác BOE và tam giác AOE có : OE chung
^BOD = ^AOD (câu a)
OB = AO (gt)
=> tam giác BOE = tam giác AOE (c-g-c)
=> EB = EA (đn) => E thuộc đường trung trực của AB
OB = OA (Gt) => O thuộc đường trung trực của AB
=> OE là trung trực của AB

Tự vẽ hình nha bạn
1)
a)xét tam giác AOB và COE có
OA=OC(GT)
OB+OE(GT)
AB=EC(GT)
Suy ra AOB=COE(c.c.c)
b) vì AOB=COE(câu a)
gócOAB=gócOCA(hai góc tương ứng)

a
) x O y M A B d
b
A O B m C n D M
c
A B C d 1 2 d D
d
A B C
ĐÃ VẼ LẠI 2 LẦN.LẦN NÀY LÀ LẦN 3
=> CUỘC ĐỜI ĐEN NHỌ CỦA COOL KID :V

Hình bạn tự vẽ nhé!
a) xét tam giác OAM và tam giác OBM có
OM cạnh chung
O1 = O2 ( vì Ot là tia phân giác )
OA = OB ( gt )
=> tam giác OAM = tam giác OBM ( c.g.c )
b) vì tam giác OAM = tam giác OBM
=> AM = BM ( cạnh tương ứng )
=> góc AMO = góc OBM ( góc tương ứng )
=> OM vuông góc với AB
C) xét tam giác ANO và tam giác BNO có
ON cạnh chung
OA = OB ( gt )
O1 = O2 ( Vì Ot là tia phân giác )
=> tam giác ANO = tam giác BNO ( c.g.c )
=> NA = NB ( cạnh tương ứng )

1/ Ta có hình vẽ:
a/ Xét tam giác OAD và tam giác OBD có:
OD: cạnh chung
\(\widehat{AOD}\)=\(\widehat{BOD}\) (GT)
OA = OB (GT)
Vậy tam giác OAD = tam giác OBD (c.g.c)
=> DA = DB (2 cạnh tương ứng)
b/ Ta có: tam giác OAD = tam giác OBD (câu a)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) (2 góc tương ứng)
Mà \(\widehat{ODA}\) + \(\widehat{ODB}\) = 1800 (kề bù)
=> \(\widehat{ODA}\)=\(\widehat{ODB}\) = \(\frac{1}{2}\)1800 = 900
=> OD \(\perp\)AB
Vậy OD vuông góc với AB