Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tam giác BAI vuông tại A và tam giác BKI vuông tại K có
. BH: cạnh chung
. ABH=KHI ( BI là tia phân giác của ABC)
Nên tam giác BAI= tam giác BKI ( ch-gn)
Nên ta có:
.AB=KB ( yếu tố tương ứng )
b) Xét tam giác ABH và tam giác KBN có
. BA=BK ( tam giác BAI=tam giác BKI )
. ABH=KBH ( gt)
BH: cạnh chung
Nên tam giác ABH= tam giác KBH (c-g-c)
Nên ta có:
BHA=BHK ( yếu tố tương ứng )
Mà BHA+BHK= 180 độ ( kề bù)
Nên BHA=BHK= 180độ:2 = 90 độ
Suy ra BI vuông góc với AK
c)Xét tam giác AMI vuông tại A và tam giác KCI vuông tại K có
. AI=KI (tam giác BAI= tam giác BKI )
. AIK=KIC ( đối đỉnh )
Nên tam giác AMI= tam giác KCI ( cgv-gnk)
Ta có:
BA=BK ( tam giác BAI= tam giác BKI)
AM=KC ( tam giác AIM=tam giác KIC)
Nên: BA+AM=BK+KC
Suy ra BM=BC
Xét tam giác MIC có
. MI=CI
Nên tam giác MIC cân tại I
Xét tam giác BMI và tam giác BCI có
. MI=IC ( tam giác AIM= tam giác KIC )
. BM=BC (cmt)
BI: cạnh chung
Nên tam giác BMI=tma giác BCI (c-c-c)
Ta có:
BMI=BCI (tam giác BMI= tam giác BCI )
Ta cũng có:
IME=ICE ( tam giác IMC cân tại I)
Nên BMI+IME=BCI+ICE
Suy ra BMC=BCM

Gt: ABC có 3 góc nhọn
Phía ngoài ABC các đều ABD; ACE. CD giao BE tại k
Kl: a/ Chứng minh BE = CD
b/ Góc BKC = ?
c/ Chứng minh KA + KB + KC = 1/2. (BE + CD)
Mk chỉ có thể làm cho bạn 1/4 điểm số của bài này thui!